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Can physics describe economy? What are the physical driving 

force behind the evolution and our sociological and economic 
activity? 

In this collection of papers I argue that entropy, under a certain 
condition, is information; and therefore information has a tendency 
to increase. Based on this, the statistical properties of information 
networks are calculated, and in contradistinction to the classic 
sparse system that yields the canonical bell-like distribution, 
information networks are found to have a universal long tail 
distribution. This distribution predicts, with great accuracy, the 
wealth distribution; the relative poverty; and wealth inequality in 
the economy and the popularity of sites on the internet. This long 
tail distribution, which is called Planck-Benford distribution, yields 
correctly Zipf law, Pareto law, and Benford law.  

Since Planck- Benford distribution has no free parameter it is a 
universal distribution and it can be applied to the analysis of polls, 
bestseller lists, earthquakes, etc. 

When the statistics of the information network in equilibrium is 
applied to the economy, the universality of the distribution means 
that the wealth distribution in equilibrium is independent of the 
wealth of the country. In addition, one can show that people tend to 
migrate from poor countries to rich countries, and money tends 
to flow from rich countries to poor countries. Therefore, one might 
conclude that the tools of mechanical statistics can treat 
sociological and economic system in similar ways that are done in 
physics. 
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Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What is the physical driving force of the changes in the world? 
What is the driving force of evolution, and what is the driving 
force of economy? The only physical driving force that generates 
irreversible changes in the universe is the propensity of entropy to 
increase or, as it generally called, the second law of 
thermodynamics. 

In my work, I study the effect of the second law of 
thermodynamics on wealth distribution among people in 
equilibrium (maximum entropy) and the dynamics of the social and 
economic network. 

 In many textbooks, there is the misconception that entropy is a 
disorder, and therefore many conclude that eventually, the second 
law will destroy the world and the economy; i.e. the book 
"Entropy: A New worldview" by Jeremy Rifkin and Ted Howard. 
However, in my papers, I argue that with contradistinction to 
quantum sparse systems in which entropy is a disorder, in dense 
classic system entropy is information, and hence when it increases 
it generates order. Papers 2, 3, 4 and 6 are discussions on the 
properties of information and how and under what conditions 
thermal heat becomes information. 

Furthermore, the probability of states distribution in sparse 
systems is normal (bell-like) and in dense systems, it becomes the 
"long tail" distribution. This distribution, called “Planck-Benford 
distribution”, is universal and independent of the energy of the 
system and has no free parameter. Pareto law, Zipf law, Benford 
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law and many other distributions that are found in many 
sociological statistics are shown to be private cases of it. In papers 
9, 10 and 1, I derive the Planck-Benford distribution and show how 
it fits the above-mentioned famous laws. 

In paper 8, I discuss the error that leads to the conception that 
power law cannot be obtained by Gibbs- Boltzmann statistics. 
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1. 
Entropy Principle in Direct Derivation of 
Benford's Law 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
edford's law is an empirical uneven distribution of digits that is 
found in many random numerical data. Numerical data of natural 
sources that are expected to be random exhibit an uneven 

distribution of the first order digits that fits to the equation, 

)
1

1(log)( 10
n

n  , where 9,8,7,6,5,4,3,2,1n          (1) 

Namely, digit 1 appears as the first digit at probability )1( , which 

isabout 6.5times higher than the probability )9( of digit 9 (Fig 1). 

 
Figure 1. Benford's law predicts a decreasing frequency of first digits, from 1 through 9. 

 
Eq. (1) was suggested by Newcomb in 1881 from observations of the 

physical tear and wear of books containing logarithmic tables (Newcomb, 
1881). Benford further explored the phenomenain 1938, empirically 
checked it for a wide range of numerical data (Benford, 1938), and 
unsuccessfully attempted to present a formal proof. Since then Benford's 

B 
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law was found also in prime numbers (Cohen, & Talbot, 1984), physical 
constants, Fibonacci numbers and many more (Cohen, & Talbot, 1984; 
Zyga, 2007; Torres et. al., 2007). 

Benford's law attracts a considerable attention (New York Times, 
1998). Attempts for explanation are based on scale invariance (Cohen, 
1976) and base invariance (Hill, 1995; Hill, 1996; Kossovsky, 2012) 
principles. However, there are no a priori well-defined probabilistic 
criteria when a data set should or should not obey the law (Zyga, 2007 ). 
Benford's distribution of digits is counterintuitive as one expects that a 
random numbers would result in uniformity of their digits distribution, 
namely,

9

1
)( n

 as in the case of an unbiased lottery.  This is the reason 

why Benford's law is used by income tax agencies of several nations and 
states for fraud detection of large companies and accounting businesses 
(Zyga, 2007; Nigrini, 1992; Nigrini, 1996). Usually, when a fraud is done, 
the digits are invoked in equal probabilities and the distribution of digits 
does not follow Eq. (1).   

In this paper Benford's law is derived according to a standard 
probabilistic argumentation. It is assumed that, counter to common 
intuition (that digits are the logical units that comprise numbers) that the 
logical units are the 1's. For example, the digit 8 comprises of 8 units 1 
etc. This model can be easily viewed as a model of balls and boxes, 
namely:   

A) Digit n is equivalent to a "box" containing n none-interacting balls. 
B) N sequence of such "boxes" is equivalent to a number or a 

numerical file. 
C) All possible configurations of the boxes and balls, for a given 

number of balls, have equal probability.  
The last assumption is the definition of equilibrium and randomness in 

statistical physics. In information theory it means that the file is in the 
Shannon limit (a compressed file). 

A number is written as a combination of ordered digits assuming a 
given base B.  When we have a number with N digits of base B, we can 
describe the number as a set of N boxes, each contains a number of balls 
n, when n can be any integer from 0 to 1B . We designate the total 
number of balls in a number as P.    

An unbiased distribution of balls in boxes means an equal probability 
for any ball to be in any box. Hereafter, it is shown that this assumption is 
equivalent to assumption C and yields Benford law. 

The "intuitive" distribution in which each box has an equal probability 
to have any digit n (n balls) does not means an equal probability for any 
single ball to be in any box, but an equal probability for any group of n 
balls (the digit n) to be in any box.  

For example, for base B=4 there are four digits 0,1,2,3. The highest 
value of a 3 digits number in this base is 3|3|3, which contains 9 balls. 
There is only one possible configuration to distribute the 9 balls in 3 
boxes (because the limit of 3 balls per box).  However, in the case of 3 
balls in 3 boxes there are several possible configurations, namely: 3|0|0, 
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0|3|0, 0|0|3, 2|1|0, 2|0|1, 1|2|0, 0|2|1, 1|0|2, 0|1|2, and 1|1|1. We see that 
digit 1 appears 9 times, digit 2 appears 6 times,and digit 3 appears 3 
times.  It is worth noting that the ratio of the digits 9:6:3, 5.0)1(  , 

333.0)2(  , and 616.0)3(  , is independent of N, which is the reason 

why 0 is not included in Benford's law. As we see in the example above, 
each box has the same probability of having 1, 2 or 3 balls as the other 
boxes, however, the probability of a box of having 3 balls is smaller than 
the probability of a box to have 2 balls and the probability of a box of 
having one ball is the highest. The reason for this is that in order for a box 
to have several balls it has to score a ball several times, since the 
probability of a box to score n balls is smaller as n increases, lower value 
digits have higher probability. The formal calculation of the distribution 
of balls in the boxes was done by writing all possible ten configurations 
(in general 

)!1(!

)!1(





NP

PN  configurations), and give each one of them an equal 

probability) and then counting the total number of each digit, regardless 
of its location. 

The distribution of P balls in N boxes in equilibrium is a classic 
thermodynamic problem. Equilibrium is defined in statistical mechanics 
as a statistical ensemble in which all the possible configurations have an 
equal probability. The equilibrium distribution function )(n  (the fraction 

of boxes having n balls) is calculated in a way that it yields maximum 
entropy, which means equal probability for all the configurations 
(microstates).  

The standard way to find the distribution function in equilibrium is to 
maximize entropy S (S is proportional to the logarithm of the number of 
configurations ), under the constraint of a fixed number of balls P. 

To do this, we apply the Stirling approximation; since 

!)!1(

)!1(
),(

PN

PN
PN




 we obtain, 

 
}ln)1ln()1{(ln nnnnNS      (2) 

 

Where 
N

P
n  . The number n is any integer (limited by B-1). If we 

designate the number of boxes having n balls by )(n then 






1

1

)(
B

n

nnP 
. 

It should be noted that we count all the boxes in all the configurations 
excluding the empty boxes (the 0's) and the boxes that contain more balls 
then B-1.   

To find )(n that maximizesS we will use the Lagrange multipliers 

method namely to define a function







1

1

))((}ln)1ln()1{()(
B

n

nnPnnnnNnf 
. The first term is Shannon 
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entropy and the second term is the conservation of the balls.  is the 

Lagrange multiplier. To find )(n we substitute 0
)(






n

nf , hence 

)
1

ln(
1

)(
n

n
n





 .      (3) 

 
We are interested in the normalized distribution, namely,  
 







1

1

)(

)(
)(

B

n

n

n
n






       (4)

  

Since 





1

1

ln
1

)(
B

n

Bn


 it follows that 

 

)
1

1(log
ln

)
1

1ln(

)(
nB

nn B 



      (5) 

 
namely, Benford's law.   

In the normalization of )(n  the quantity


N  disappeared. That means 

that the distribution function is independent in the digit location in P and 
N and it is only a function of B. That is the reason why Benford law is so 
general.  

Reconsidering the example of 3 balls in 3 boxes, we calculate from 
Eq,(5) that 5.0)1(  ; 29.0)2(  21.0)3(  . The total number of the 

none-zero digits (1, 2 and 3) is 18, and the distribution points to the ratio 
9:5:4 as compared to the result of 9:6:3 that was obtained in the numerical 
example. The deviation from the theoretical calculation is explained by 
the fact that Sterling approximation yields a better fit as the number of 
digits grows. 

Benford's law distribution was shown recently to be a special case of 
Planck distribution of photons at a given frequency (Kafri, 2016). It is 
intriguing that digits distribution of prime numbers also obeys the Planck 
statistics. 
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2.  
The Second Law and Informatics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Introduction 
eat is the energy transferred from one body to another. The 
second law of thermodynamics gives us universal tools to 
determine the direction of the heat flow.  A process is likely to 

happen if at its end the entropy increases. Similarly, energy distribution of 
particles will evolve to a distribution that maximizes the Boltzmann -H 
function (Huang, 1987) namely, an equilibrium state, where entropy and 
temperature are well defined. 

Information technology (IT) is governed by energy flow. Processes 
like data transmission, registration and manipulation are all energy 
consuming. It is accepted that energy flow in computers and IT are 
subject to the same physical laws as in heat engines or chemical reactions. 
Nevertheless, no consistent thermodynamic theory for IT was proposed. 
Hereafter, a thermodynamic theory of communication is considered. 

The discussion starts by drawing a thermodynamic analogy between a 
spontaneous heat flow from a hot body to a cold one and energy flow 
from a broadcasting antenna to receiving antennas. This analogy may 
look quiet natural. When a file is transmitted from a transmitter to the 
receivers, the transmitted file's energy, thermodynamically speaking, is 
heat. The Boltzmann entropy and the Shannon information have the same 
expression (Shannon, 1949), so we can think about information increase 
in broadcasting with analogy to entropy increase in heat flow.  However, 
to complete the analogy, it is necessary to calculate a temperature to the 
broadcasting antenna and the receiving antenna. 

To establish this analogy one has to calculate, for informatics systems, 
the thermodynamic quantities appearing in the second law, namely, 
entropy, heat, and temperature, and to define equilibrium. These 
informatics- thermodynamics quantities should comply with the Clausius 

H 
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inequality (Jaynes, 1988; Kestin, 1976) and to reproduce the Carnot 
efficiency. 

The classical thermodynamics of heat transfer from a hot bath to a 
cold bath and the basic definitions of entropy, heat, temperature, 
equilibrium, and the Clausius inequality are a major part of the discussion 
of information thermodynamics. Therefore, in section 2 a brief review of 
these concepts is provided.  

A file with a given bits distribution resembles a frozen two-level gas. 
The thermodynamics of a two-level gas in which the location of the 
exited atoms is constantly varying in time is well known. Deriving the 
thermodynamics of a file calls for comparison between the 
thermodynamics of a two-level gas and that of a binary file. In section 3, 
a calculation of the entropy, heat, temperature, and the definition of 
equilibrium for the transfer of a two-level gas from a hot bath to a cold 
bath according to statistical mechanics are provided and the compliance 
with the Clausius inequality is shown.  

Following this review, in section 4, an analysis of the transfer of a 
binary file (a frozen two-level gas) from a broadcasting antenna (a hot 
bath) to receiving antennas (a cold bath) is provided.  A temperature is 
calculated to the antenna that, together with the transmitted file 
information (entropy) and its energy (heat), is shown to be in accordance 
both with classic thermodynamics (i.e. the Clausius inequality) and 
information theory. The difference between randomness of a two-level 
gas, and randomness of a binary file and its effect on the thermodynamic 
quantities is discussed. It is concluded that the Shannon information is 
entropy.  

Based on the results of section 4, in section 5 the second law of 
thermodynamics is defined for informatics. It is argued that 
reading/writing a file is equivalent to an isothermal compression/ 
expansion of an ideal gas and amplifying/attenuating a file is equivalent 
to an adiabatic compression/expansion of an ideal gas. An ideal amplifier 
cycle comprises of two adiabatic and two isotherms is shown to have the 
Carnot efficiency.   

Finally in section 6, this theory is used to calculate a thermodynamic 
bound on the computing power of a physical device. This bound is found 
to be the Landauer's principle.  

 

Classical thermodynamics of heat flow 
In this section a short review of the quantities that will be used later 

for Informatics systems is provided (Jaynes, 1988). The second law of 
thermodynamics is a direct outcome of maximum amount of work ΔW 
that can be extracted from an amount of heat Q transferred from a hot 
bath at temperature TH to a cold bath at temperature TC (Jaynes, 1988). 
This amount of work can be calculated from the Carnot efficiency,  

 
η ≡ W∕Qη ≤ 1 – TC /TH.          (1) 
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Namely, the maximum efficiency η of a Carnot machine depends only 
on the temperatures TC  andTH. To obtain the maximum efficiency the 
machine has to work slowly and reach equilibrium at any time in a 
reversible way. Clausius (Kestin, 1976) defined the entropy, S, in 
equilibrium, such that it reproduces the Carnot efficiency, namely, 

 
S ≥ Q/T        (2) 

 
If one dumps an amount of heat Q, to a thermal bath at temperature T, 

in a reversible way, thechange in the entropy of the bath is S = Q/T, and 
the system is in equilibrium. If one dumps the heat irreversibly the system 
is not in equilibrium and Q/T is smaller than ΔS as a result of efficiency 
lower then η. The entropy change S is equal to Q/T only in a reversible 
dumping in equilibrium. Therefore, if we assume that any system has a 
tendency to reach equilibrium, any system tends to increase Q/T. Taking a 
system out of equilibrium requires work, since the system will eventually 
reach equilibrium (namely, the energy of the work will be thermalized), 
therefore the entropy of a closed system tends to increase and cannot 
decrease. Temperature and entropy are defined in equilibrium and the 
temperature can be calculated as, 

 
T=(Q/S )equilibrium       (3) 

 
Note that away from equilibrium entropy and temperature are not well 

defined (Jaynes, 1988). 
Consider a simple example of the entropy increase in heat flow from a 

hot thermal bath to a cold one (see Fig 1).  
 

HT

H

H

T

Q
S 

C

C

T

Q
S 

CT

Hot bath

Cold bath

 
Figure 1: The entropy increase in spontaneous energy flow from a hot thermal 

bath to a cold thermal bath. 
 

When we remove an amount of energyQ from the hot bath, the 
entropy reduction at the hot bath is Q/TH .When we dump this energy to 
the cold bath, the entropy increases by Q/TC .The total entropy increase is   
S =Q/TC  -Q/TH  . One can see that if the process is not in equilibrium 
S>Q/TC  -Q/TH .  In general 
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S ≥ Q/TC  -Q/TH       (4) 
 
Hereafter, it is shown that inequality (4) is true both in statistical 

physics (sections 3) and in information theory (section 4). 
 

Statistical Physics of a two-level gas 
A binary file resembles a two-level gas. However, in a two-level gas 

particles exchange energy and in a binary file the energy distribution of 
the bits is fixed. Hereafter, a thermodynamic analysis of a two-level gas 
transmitted from a hot bath to a cold bath is reviewed. In section 4 the 
thermodynamic quantities that will be calculated for file transmission will 
be compared to those of a two-level gas and the origin of the differences 
is discussed. 

Boltzmann has shown that the entropy of a system can be expressed as 

i

i

i ppkS ln
1






  where i index the possible microscopic 

configuration of the system, pi is the probability to be in the ith 
configuration, Ω is the total number configurations and k is the 
Boltzmann constant. If all configurations are equally probable pi= 1/Ω, 
then S = klnΩ, (Jaynes, 1988). This expression will be used to calculate 
the thermodynamic quantities appearing in the Clausius inequality for a 
system that resembles an informatics system. Consider a thermal bath at 
temperature TH, which is in contact with a sequence of L states. n of the L 
states have energy ε and will be called "one". 

L -n of the states have no energy and will be called "zero". We 
analyze the thermodynamics of transferring this two-level gas from a hot 
bath at temperature TH to a colder bath at temperature TC with analogy to 
the heat flow analysis of section 2. To calculate the entropy we need to 
count the number of configurations of the two-level sequence, namely, 
the possible combinations of n, "one" particles in L states. As can be seen 
in Fig 2 this number is the nth binomial coefficient. Namely, there are, Ω = 
L!/[ n! (L-n)!] possible combinations. 
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Figure 2: A two-level gas with L=6 and n=2. In equilibrium all possible 

combinations have an equal probability. If some of the combinations have higher 
probability than others, the system is not in thermal equilibrium. 

 
The entropy of the system is klnΩ, and the internal energy of the 

system is U = nε. Since the gas is entirely removed from the thermal bath 
Q=U and the temperature is given by Eq. (3). Using Stirlings formula we 
derive ∂Q /∂S  to obtain T (Kompaneyets, 1961). The well-known result 
is, 

ekT

nL

n 




or

n

nL
k

T




ln

      (5) 

Eq. (5) is the Maxwell Boltzmann distribution for a two-level gas 
(Gershenfeld, 2000). For a given ε, one parameter T represents all the 
knowledge on the two-level gas in equilibrium. This is a well-defined 
system with a well-defined entropy, temperature and energy. The 
equilibrium was invoked by giving an equal probability distribution to all 
the possible combinations Ω of the n particles in L states. If a system is 
not in equilibrium, there are certain combinations that are preferred and 
therefore the gas has a biased distribution. An unbiased distribution is the 
probability distribution, which describes the information we have about a 
system in the most honest way that allows us to make the best prediction 
about the property of a system. Jaynes (1957a; 1957b) has shown that 
unbiased distribution yields the Shannon information. In a biased 
distribution the actual combination span is smaller, and Ω of the gas is 

smaller. Boltzmann called the quantity 
i

i

i ppk ln
1






 ≥ -S calculated for a 

biased distribution the H function (Huang, 1987).     
Hereafter, we calculate the entropy balance when a two-level gas is 

removed from a hot bath and is dumped into a cold bath for reversible and 
irreversible operation. It is shown that the process complies with the 
Clausius inequality 
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 When the two-level gas is removed from the hot bath, the entropy is 
reduced by     SH = nHε/TH=  knHln[(L-nH) / nH] ≥ Q/ TH . When we dump it 
to the cold bath, we generate an entropy SC = nHε/TC=  knHln[(L-nC) / nC] ≥ 
Q/ TC. 

The total change in the entropy is, 
 

𝑆𝑐 − 𝑆𝐻 =
𝑘𝑄

𝜀
ln

𝑛𝐻  𝐿−𝑛𝐶 

𝑛𝐻  𝐿−𝑛𝐻  
=

𝑄

𝑇𝑐
−

𝑄

𝑇𝐻
    (6) 

 
If TC is lower than TH , then  nC>nH  and we see that Eq. (6) is positive 

with accordance with eq. (4), namely, the Clausius inequality (see Fig 3).   
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Figure 3: The entropy increase, due to transmission of a two-level gas, from a hot 

bath to a cold bath is with accordance with the Clausius inequality. 
 

Thermodynamics of information 
 In the Shannon model a binary file is transferred from a transmitter to 

a receiver. A binary file can be viewed as a frozen two-level gas. A binary 
file is not in thermal equilibrium as only one possible combination of the 
bits is transmitted. 

 Shannon's first theorem deals with the maximum amount of 
information that can be coded in a given binary file of length L in a 
noiseless channel and in a noisy channel (Shannon second theorem). This 
amount of information is called the Shannon information and it was 
shown to have the same expression as the Boltzmann entropy, namely 

i

L

i

i ppI log
1




 (Shannon, 1949).  Many papers were written on the 

connection between the Shannon information and the Boltzmann entropy 
(Jaynes, 1957; Brillouin, 1962; Rojdestvenski & Cottman, 2000; Kafri & 
Glatt, 1990). However in this paper a connection between Shannon 
information and the second law (i.e. the Clausius inequality) is discussed. 
The amount n of "one" bits, in a file of length L, has no unique relation to 
the amount of the Shannon information in the file. This is in 
contradistinction to a two-level gas in which the energy the temperature 
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and the entropy are functions of n (see Fig. 3). For example, in a group of 
several files having the same n some may have a very small amount of 
Shannon information, i.e. when all the "one" bits are in the beginning of 
the file, and the rest of the file has zero bits or any other ordered 
combination (see Fig. 4) that can be regrouped effectively. Some other 
files may have a relatively high amount of Shannon information, if the 
distribution of the bits in the file is random as will be discussed later. 

 

 
Figure 4: Three possible binary files having the same energy. The higher two files 
have higher order and therefore contain little Shannon information. The lower file 

is random and is shown to be in equilibrium. 
 
The amount of the Shannon information in a file is a function of the 

randomness of the bits in it. The reason that Shannon obtained the same 
expression as Boltzmann is that, in a two-level gas in equilibrium we have 
no way to predict what combination of "one" particles will be at a certain 
time (see Fig.2), and in a random file we have no way to predict what bit 
will be at a certain time. The unpredictable sequence of bits is the useful 
information. When Alice is reading a binary file of length L she always 
obtains Lln2 useful nats (1bit = ln2 nat) even if the bits are ordered, 
because she lacks an a-priori knowledge of what bit will come next. 
However, Shannon first theorem is about Bob's ability to send a shorter 
file of length L' ≤  L from his knowledge of the sequence of the bits that 
he intends to send. The shortest file that can be recovered by Alice to 
reproduce the original file L is the amount of the Shannon information in 
the file. It is believed that the shortest file L' is a random file (namely 
there is a conjecture that a random file cannot be compressed). 

Let's examine an antenna broadcasting a file composed of energy and 
includes information, which is received by several antennas. Consider the 
radiating antenna as a hot bath emitting energy and entropy. Similarly 
consider the receiving antennas as a cold bath that absorbs energy and 
entropy. It is argued that if we assume that information is entropy, the 
information balance obeys the Clausius inequality. To calculate the 
thermodynamic functions of an informatics system one need to calculate a 
temperature for the antenna. We assume that the antenna's temperature is 
identical to that of the file that it emits or absorbs. This is with analogy to 
the two-level gas transmission that was discussed in the previous section.       

The calculations of the thermodynamic properties of a file and a two-
level gas are different. In two-level gas Ω is the number of combinations 
of n particles in L states, in a file Ω= 2L.  In a two-level gas there is a 
well-defined ratio between the entropy and the energy that enable to 
calculate T, for any n, because randomness means an equal-probability 
for any combination of n "one" particles in L states. For a file, 
randomness means an equal-probability for any bit; therefore, a random 
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distribution means n ≈ L/2.  If n is not equal to L/2 there is no unique 
connection between the energy and the Shannon information and 
therefore a temperature cannot be calculated. For example, in Fig. 4 all 
the three files have the same amount of energy. The upper two have very 
little information as Bob can compress them significantly. The lower file 
is a random file and contains more information. For a random file the 
ratio between the energy and the information is unique as n = L/2 and I = 
Lln2, where I is the Shannon information.  So by assigning energy ε to the 
“one” bit we obtain Q = Lε/2and S = kI = kLln2. Using Eq. (3) we obtain 
for the temperature, 

 
T=Q/S =ε/k2ln2.       (7)  

 
In thermal systems, equilibrium is a state of randomness induced by 

collisions. Therefore, in analogy, it is assumed, that a random file is in 
equilibrium and has a well-defined temperature. This is in accordance 
with Clausius's result that temperature is defined only in equilibrium.  The 
average energy per bit is εn=ε/2ln2, and therefore, Eq. (7) yields that for 
informatics εn =kT. 

 The derivation of the temperature in Eq. (7) is based on two major 
assumptions. The first one is that S = kI, namely, that the Shannon 
information is entropy as a consequence of the randomness of the bits in a 
file. The second assumption is that a random file is a state of equilibrium 
similarly tothermal systems in whichrandomness is a state of equilibrium. 
The obtained temperature εn = kT is common in physics (i.e. harmonic 
oscillator). Nevertheless, it is necessary to show that these two 
assumptions encapsulated in the temperature of Eq. (7) comply with the 
Clausius inequality and the Carnot efficiency.   

The broadcasting of a file to several antennas is equivalent to heat 
flow from a hot bath to a cold bath. Specifically a broadcasting antenna, 
which broadcasts a file having a high-energy bit, is a hot bath. A 
receiving antenna, which absorbs a lower energy bit file, is a cold bath. 
The entropy multiplies according to the number of the receivers. To 
calculate the entropy-information balance we consider an antenna 
broadcasting a binary file to N antennas. A possible realization of such 
system is a point-radiating antenna surrounded by a sphere, whose area is 
divided to N equal receivers. The hot antenna emits the broadcasted file at 
a temperature TH. A receiver antenna receives the broadcasted file with a 
lower temperature TC=TH /N. Since Q/T = kI, we obtain from Eq. (4), 

 
S≥ Q/TC  -Q/TH  = NkI– kI.     (8) 

 
Eq. (8) shows that the file temperature, obtained in Eq. (7), yields 

correctly the increase in information in the broadcasting of a binary file to 
N receivers, which is NI –I. In fact the temperature is canceled out to give 
us simply the information balance from the thermodynamic quantities. In 
a “peer-to-peer” transmission, as in the Shannon model, no information 
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increase is involved; therefore no thermodynamic considerations are 
necessary. 

Now it is necessary to check if Eq. (8) behaves according to the 
Clausius inequality out of equilibrium. Namely, if broadcasting of a none-
random file yields the inequality sign. When there are correlations 
between the bits, the amount of the Shannon information in the file is 
smaller. As a result, the same energy carries less Shannon information i.e. 
I is smaller than S/k. This shows that the second law of thermodynamics 
holds for informatics systems. Using Eq. (8) we can rewrite the Clausius 
inequality for informatics system as, S ≥ kI. 

kT nH 

kI
T

Q
S

H

H 

kNI
T

Q
S

C

C 

NkT nC 

Hot bath -Broadcasting Antenna

Cold bath - Receiving Antennas

 
Figure 5. The analogy between heat flow from a hot bath at temperature TH to a cold bath at 

temperature TC and an antenna broadcasting a file of bit energy ε to N antennas, each receiving 
the file with bit energy ε/N. In the thermal case the entropy increase isS ≥ Q/TC – Q/TH. However, 

the same equation S ≥ Q/ TC – Q/TH reproduces well the information balance when we use the 
temperature definition from Clausius inequalityQ/S for a random binary file. The antennas 

deployment is drawn to emphasize the physics only. 
 

This implies that Information, like entropy, tends to increase. In a 
general case both informatics and thermal processes occurs 
simultaneously. In these cases a transformation of thermal entropy to 
informatics entropy and vice versa may occur.  If we assume that entropy 
is an extensive quantity the Clausius inequality can be written as, 

 
S ≥ Q/T +kI       (9)   

 
The first term on the RHS is the thermal entropy and represents the 

ensemble randomness due collisions. The second term is the informatics 
entropy and represents a quenched randomness of the nats in a sequence 
(a file). The amount of the Shannon information in a partially random file, 
with some correlation between bits, is equivalent to the Boltzmann –H 
function, namely the "entropy" calculated out of equilibrium. Shannon, in 
his famous paper (Shannon, 1949), pointed out this analogy. 
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The second law for informatics-the Carnot cycle 
In the previous section the energetic of a file broadcasted from one 

antenna to several antennas (a generalization of the Shannon theory) was 
studied. An analogy was drawn between information broadcasting from 
one antenna to several antennas to heat flow from a hot bath to a cold 
bath. What was shown is that: 

1. The Shannon information content I of a file is equivalent to 
the Boltzmann -H function. 

2. The transmitted file energy is equivalent to heat. 
3. A random file is a state of equilibrium.   
4. The temperature of the antenna is proportional to the 

average nat energy broadcasted from it or received by it. 
These definitions comply with the Clausius inequality. We complete 

the analogy by demonstrating an informatics cycle, analogous to a Carnot 
machine. 

The second law of thermodynamic is more renown in its verbal form, 
namely: 

It is impossible to construct a cyclic machine whose net outcome is 
transferring heat from a cold bath to a hotter bath. Namely, work has to be 
invested, from outside of a system, to transfer heat from a cold bath to a 
hotter bath. This definition of the second law is a direct outcome of the 
Clausius inequality. If one transfers an amount of heat Q from a low 
temperature bath to a high temperature bath, S is negative with a violation 
of the second law. Machines with a negative entropy balance are called 
perpetuum mobile of the second kind.  

The Clausius inequality was deduced from the efficiency of the Carnot 
machine. The Carnot machine comprises of a cylinder equipped with a 
piston filled with an ideal gas. The Carnot machine transfers energy from 
a hot bath to a cold bath and produces work. The piston is first in contact 
with a hot bath at a temperature TH. At the first stage the piston expands 
slowly at a constant temperature (isothermal expansion). In this stage the 
piston removes energy and entropy from the hot bath into the gas. In the 
second stage the piston is isolated from the hot bath and expands until the 
gas is cooled to the temperature of the cold bath. During this expansion 
the piston produces work against an external pressure. Since the cylinder 
is isolated, no heat is exchanged with the gas, so that its entropy remains 
constant (this process is called an adiabatic expansion). The third step is 
an isothermal compression; the gas in the cylinder dumps heat and 
entropy to the cold bath. The cycle is completed by an additional 
adiabatic compression of the gas to the temperature of the hot bath by 
applying work. The total work and energy balance yields the Carnot 
efficiency. 

It is now shown that it is possible to construct an informatics Carnot 
cycle consists of two isotherms and two adiabatic. Reading a file is an 
analog of an isothermal expansion. When a file is received at constant bit 
energy, the energy of the receiver increases but its temperature remains 
fixed, exactly as in an isothermal compression. When a file is amplified, 
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its temperature is increased but its information content remains fixed. 
This is an adiabatic compression. 

 An analog of a Carnot cycle is found in a transmitter of a file over an 
optical fiber. The file is amplified periodically at a given distances due to 
the signal attenuation caused by energy loss in the fiber. Carnot was 
interested in extracting mechanical work from a temperature gradient to 
convey physical goods over the friction of the railroad. In an optical fiber 
transmission, one wants to invest electrical work to covey information 
over the intrinsic loses of light on its path.  

The Carnot cycle for a file transmission over a fiber comprises of four 
steps identical to those of the original mechanical Carnot heat engine, see 
Fig.6. 

1. A file is sent at high bit energy (high temperature) into the fiber. 
This is a writing process that is equivalent, as discussed above, to an 
isothermal expansion. 

2. The file is transmitted through the fiber and during the 
transmission the file is attenuated. Its bit energy is reduced and the file is 
cooled. The information remains fixed and therefore this process is an 
adiabatic expansion. (In this example, the work is lost, outside the 
informatics system). 

3. An amplifier reads the file at a low temperature. During this 
process the energy of the amplifier is increased but its temperature 
remains constant. This is an isothermal compression. 

4. The file energy is amplified at fixed information content. This is 
an adiabatic compression. The file is ready for a new cycle. 
 

 
 

Figure 6. The Carnot cycle of a file transmission along an optical fiber. Amplifiers 
are necessary to overcome the energy loss in the fiber. Each cycle of amplification 

is shown to be a Carnot cycle of two isothermals and two adiabatics. 
 
With analogy to the original Clausius formulation it is possible to 

define the second law of thermodynamic for informatics: 
It is impossible to contract a cyclic amplifier whose net outcome is 

transferring heat from a low bit energy file to high bit energy file. Namely 
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any amplifier requires outside work (i.e. a power source). If an amplifier 
receives a low temperature TC file and increases its temperature to TH, at 
the end there is a negative entropy balance, S =Q/TH  - Q/TC  < 0, because 
higher the energy of a bit means less bits per Q.  Therefore, it requires 
adding to Q an extra energy in order to avoid negative entropy. To 
conserve the entropy one needs that 

QH /TH = QC /TC. Namely, the information of the hot file is equal to that 
of the cold file. Designating QC=Q and QH= Q+W, where W is the added 
work requires to avoid a negative entropy, we obtain that W=Q (1 – TC 

/TH). Namely, the Carnot efficiency, of Eq. (1).  
This formulation is applicable as well to optics. Every picture is 

comprised of combination of spatial modes (Kafri & Glatt, 1990) i.e. 
pixels. These spatial modes are independent light sources. If one detects 
an image, for a given time period, it is possible to assign energy to the 
pixels of the image and thus to calculate a temperature in addition to the 
Shannon information content. Therefore we can generalize the 2nd law for 
optics; 

It is impossible to construct a passive imaging optical device that will 
produce an image with energy flux higher than that of the original image. 
The above phrases are by no means surprising or novel. However, it is 
shown that energy flow in computers and other informatics systems obeys 
the same physical laws as energy flow in steam engines and chemical 
reactions.  

 

The Computing power of a physical device - The 
Landauer's Principle 

Thermodynamic considerations can be used to calculate the maximum 
speed of a processor from the power P applied on it and its ambient 
temperature. In Turing model (Turing, 1936) erasing one bit and 
registering it again is an example of a logical operation. Therefore, the 
bits rate f of a file can be considered as the computing power of a physical 
device. 

One can write the temperature of an emitter or a receiver as; 
 

T = P/(k f ln2).                                 (10) 
 
Every physical system is surrounded by a thermal bath that emits 

thermal noise at a temperature Tn. The higher the bit rate, the lower the 
temperature of the file as the bit energy is reduced. Since the temperature 
of the file must be kept above the temperature of the noise Tn, namely T 
>Tn , the frequency has an upper limit.  From Eq. (10) we conclude that 
f<P/(kTln2) where T should be about 10 times higher than the noise 
temperature. Therefore, the upper bound on computing power of any 
device is, 

 
f ≤ P/(10 kTnln2).                    (11) 
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Namely the power applied on any computing device and its ambient 
temperature suffices to calculate a limit on its computing power. Von 
Neumann claimed that a computer operating at temperature T must 
dissipate at least kTln2 energy per elementary act of information. In 
nature the ratio per nucleotide or amino acid is 20-100 kTln2 (Bennet, 
2003). The minimum energy dissipation per logical operation as 
suggested by Von Neumann is known as Landauer's principle (Bennett, & 
Landauer, 1985). It is seen that it obtains naturally from the second law of 
thermodynamics.   

  

Summary 
When a random binary file is removed from an emitter or absorbed by 

a receiver, its energy may be considered as heat and its Shannon 
information as entropy. The average nat energy of the file is kT, where T 
is shown to be the informatics temperature of the emitter or the receiver.  
If the binary file is not random, Shannon information is Boltzmann –H 
function. This approach is shown to comply with the second law of 
thermodynamics, reproduces the Carnot efficiency and the Landauer's 
principle.  
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3. 
Informatics Carnot Machine in an Optical 
Fiber 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Introduction 
sequence of light pulses transmitted through an optical fiber is 
widely used in communication (Palais, 1988). A random sequence 
of identical light pulses, representing "1" and vacancies, 

representing "0", is the physical entity of a transmitted binary file. The 
length L of the pulse's sequence (the number of the pulses and vacancies) 
and the randomness of the distribution of the pulses determine the amount 
of the Shannon information being transmitted (Shannon, 1949). In this 
communication a thermodynamic analysis of the transmission of a 
random sequence of a light pulses (a file) is considered. It shown that the 
Shannon information is entropy, and the amplification process done in an 
optical fiber is a Carnot cycle having the Carnot efficiency. 

To calculate the entropy of the sequence of pulses, it is first necessary 
to calculate the entropy of a single, single-mode coherent pulse. It is 
assumed that the ith pulse in a sequence has ni  photons, of energy hν, in a 
single mode. Since the photons are indistinguishable, the pulse is 
coherent. The temperature of the pulse will be assumed to be equal to that 
of a blackbody that emits ni photons into a single-mode of frequency ν 
(Gershenfeld, 2000). Since a blackbody is in equilibrium with its 
radiation, a temperature can calculated. (Appropriate spatial and spectral 
filters may filter the other radiation modes). In this case, 

 

1

1
/




iBTkhi
e

n


                   (1) 

 
The temperature of the coherent pulse obtained from eq. (1) to be 
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The total energy of the pulse qi  is nihν. Therefore the entropy that that 

a single pulse carries away from the blackbody is Si = qi /Ti, or: 
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lim it means that the entropy of a coherent pulse is 

identical to that of a classic harmonic oscillator (namely qi =kBTi ) and is 
not a function of its energy. Similarly, a mode without energy carries no 

entropy as 0lim
0




i
n

S
i

.  

The total entropy of a sequence of pulses, some with a large number 
of photons, (having entropy kB), and some with no photons (empty pulses 
having no entropy), is the Gibbs mixing entropy of the sequence, namely, 

j

j

jB ppkS ln
1






 . Where Ω is the number of configurations of the pulses 

and pj is the probability of the jth configuration. It is seen that the Shannon 
information and entropy are equivalent in the classical limit (a large ni) to 
the Gibbs entropy of mixing. 

For example, to calculate the entropy of a random sequence of light 
pulses, of length L, it is necessary to consider the fact that each pulse has 
a probability of ½ to be "one" and probability of ½ to be "zero".  
Therefore, the mixing entropy term is 

2ln)
2

1ln
2

1
2

1ln
2

1( BBi kkS  . To find the total entropy of the 

sequence we can sum all the entropies of the pulses (because the entropy 

is extensive), namely, 2ln
1

LkSS B

L
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i 
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. The Shannon information I is 

defined as
j

j

j ppI ln
1







 (Shannon, 1949).  If the probability of all the 

configurations is equal to 1/Ω than I = logΩ. The number of the 
configurations of a binary file of a length L is 2L, therefore the maximum 
amount of the information in the bits of a file having L pulses is Lln2 nats 
(1bit = ln2 nat). It is seen that thermodynamics and information theory 
yield the same result. 

 When the sequence of the bits is not random, the amount of 
information of the sequence is smaller. Therefore, in general, we obtain 
the Clausius inequality,  
 
S ≥  kBI.                                                              (4)  
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One can generalize this analysis and calculate the energy and the 
temperature of the whole sequence of pulses. This can be done easily for 
a random sequence.  When ni is large, the temperature Ti of a coherent 
pulse is nihν/kB=qi/kB where qi is the energy of the pulse. Namely, with 
contradistinction to the entropy, Ti is a function of qi.. If we assume that 
all the energetic pulses have an equal energy q, the total energy of the 

sequence is L
q

qQ
L

i

i
21




. The entropy of the sequence is S= kBLln2 

in nats or kBL in bits. The file temperature T is Q/S =q/2kB. This means 
that the average bit's energy q/2 is equal to kBT. This is the same relation 
as of a harmonic oscillator. It is worth noting that a random sequence of 
pulses is a non-coherent radiation, nevertheless it retains the 
thermodynamic properties of a harmonic oscillator.  

Now it shown that this formalism complies with the second law of 
thermodynamics (Jaynes, 1988). Consider a long optical fiber in which a 
file comprising a sequence of light pulses, having a temperature TH, with a 
pulse energy q H, travels along the fiber. The pulse energy attenuated due 
to the loss in the fiber. Therefore, the energy and the temperature of the 
pulse reduced to TC. Nevertheless, the amount of information (the 
entropy) remains intact. This process of cooling at constant entropy, 
thermodynamically speaking, is an adiabatic expansion. When the pulse 
energy reduces, the file requires amplification. To amplify the sequence 
of the pulses, the amplifier has to read the file first. The reading process is 
an energy transfer to the amplifier at constant bit energy.  In this process, 
the amplifier increases its energy at a constant temperature. 
Thermodynamically speaking, this process is an isothermal compression. 
In the next stage the file is amplified back to TH . This stage is an 
adiabatic compression in which we invest work to increase the energy of 
the pulses without increasing their information (entropy). Finally, at the 
last stage the amplifier writes (emits) the light pulses into the fiber. In this 
stage, the amplifier reduces its energy at a constant temperature TH and 
the cycle starts again.           

 
Figure 1. A Carnot cycle for a  file amplification. Amplifiers are necessary 
to overcome the energy loss along a fiber. Each cycle of amplification is a 

Carnot cycle of two isothermals and two adiabatic. 
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Hereafter it shown that this cycle has an efficiency of the Carnot 
machine. Before entering the amplifier, the sequence of the light pulses 
has a relatively low temperature TC, and its entropy is Q/TC.  After the 
amplification, it has a higher temperature TH. If Q is unchanged, the 
entropy is smaller. Therefore, the entropy balance ΔS = Q/TH  - Q/TC < 0 is 
negative, which is a violation of the 2nd law. The physical reason for the 
entropy reduction is that with a given amount of energy Q, one can write 
more low-energy bits than one can write high-energy bits. To conserve 
the entropy (a reversible operation), we have to keep ΔS = 0. That means 
that we have to add more energy to Q. For a reversible operation QH /TH = 
QC /TC . Designating QC= Q and QH = Q+W, we obtain, 
W= Q(1- TC/TH ). In the irreversible case QH /TH > QC /TC, thus in general 
we obtain; 
 

)1(
H

C

T

T

Q

W
                                                           (5) 

 
Eq. (5) is the Carnot efficiency.  

Summary and discussion: The amount of entropy removed from a 
blackbody by a single radiation mode in the classical limit is kB. If the 
radiation mode is empty, it does not remove entropy. The entropy 
removed from the blackbody is assumed to be equal to the entropy of the 
pulses. Therefore, it is argued that in the classical limit, an energetic pulse 
carries kB entropy and a vacancy carries a zero entropy. When this 
assumption is applied to calculate the entropy of a sequence of pulses, the 
obtained entropy of the sequence is the Gibbs mixing entropy, which is 
identical to the logical Shannon information. The plausibility of this 
formalism demonstrated by presenting an informatics Carnot Cycle that 
yields the Carnot efficiency for an ideal amplifier cycle in an optical fiber.  

Temperature and thermal equilibrium are concepts that used to 
describe random systems in equilibrium. In random systems, energy 
exchanged between particles by collisions. There is no energy exchange 
between photons. Nevertheless, the quenched randomness of the energetic 
bits and the zero bits behaves according to the present formalism as in 
equilibrium, namely, a state where it is possible to calculate a unique 
temperature.  

It was shown previously that laser operation (Geusic, 1967; Levine & 
Kafri, 1974) and laser-cooling processes (Kafri & Levine, 1974) which 
involve a production or a usage of a coherent light, yield the Carnot 
efficiency, and therefore comply with the second law of thermodynamics. 
In these processes, the light was considered as work, as light radiation 
was assumed to be coherent. A coherent light beam has a single radiation 
mode (Kafri, & Glatt, 1990) and therefore it carries negligible amount of 
entropy. In the present study L/2 pluses, distributed randomly in L modes, 
carry entropy that is shown to be the Shannon information. The pulse 
sequence is not coherent, as it is random. The lower the coherence, the 
higher is the amount of information that can carried by the sequence. This 
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communication suggests that the Shannon information can affect the 
efficiency of a Carnot machine.    

Only when ni is large the entropy is not a function of the energy and 
the temperature. In this limit, the entropy becomes a pure measure of the 
quenched randomness, exactly as the logical Shannon information. This is 
a vital condition in informatics, as the entropy should remain intact with 
the energy attenuation. When ni is small, the entropy S=S(Q) is smaller 
than that of the logical information. The entropy deficiency kBI - S(Q) is a 
loss of the logical information.  

The Carnot efficiency of an amplifier can be tested experimentally. 
Calorimetric experiments of this kind require careful photon counting; 
nevertheless they are possible in the contemporary technology. This study 
suggests that the second law is applicable in the classical limit to 
informatics. 
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4. 
The Second Law as a Cause of the Evolution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Introduction 
ntil the late 17th century, the common hypothesis about the origin 
of life was Abiogenesis or a spontaneous generation of life from 
organic substances. For example, if we put an orange on a table, 

after a while we will probably find worms in it. The conclusion that the 
worms generated from the orange is only part of the truth. We know 
today that eggs of a fly called Drosophila melanogaster have to be present 
in the orange, in the first place in order for the worms to generate. 
Nevertheless, the "explanation" that the eggs are the reason for the 
generation of the worms in the orange does not diminish the appeal of the 
Abiogenesis hypothesis. For an observer in space looking at the earth 
over billions of years, the formation of life, buildings, roads, cars etc, 
cannot explained in a similar way as the formation of worms in the 
orange. For him, the explanation for life and even buildings, books etc. is 
a spontaneous generation. What are the "eggs" of these objects? 

Contemporary science deals with evolution, namely how life evolved 
from the simple to the complex. Nevertheless, evolution theories do not 
deal and do not explain the reason for spontaneous generation of complex 
objects as life and artificial objects (Simeonov, 2010). 

Sometimes life regarded as a thriving for order. It seems we are 
constantly fighting against the chaos invading our life, constantly looking 
for rules and laws, and if we do not find them, we invent them. However, 
there is no scientific definition of order. It seems odd that order not 
defined in science, while entropy, the entity that conceived as a measure 
of disorder, is so widely used. According to the second law of 
thermodynamics, any process that causes the entropy to increase is likely 
to happen. In other words, such processes are spontaneous. This is the 
reason for the bad reputation of the second law "which fights our 

U 
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tendency to order". The Internet is loaded with theological material 
claiming that life is a violation of the second law of thermodynamics. 

In this paper, it argued exactly the opposite: The second law is 
responsible for life because life related to a spontaneous information 
increase, and information is a part of entropy. It argued that entropy 
comprises of two parts: the thermal entropy and the informatics entropy. 
While the thermal entropy and its connection to the 2nd law are well 
known, the connection between information and the 2nd law was only 
recently discussed (Kafri, & Kafri, 2013; Kafri, 2007a; 2007b). 

Information conceived (erroneously) as order. It suggested that 
information contains null or even negative entropy (Brillouin, 1983). This 
"intuitive reasoning" is logically sound, as many understand information 
as the requirement that Alice will obtain the same value for the ith bit each 
time Bob sends her an identical file. Since the bits location is fixed, the 
file is a frozen entity and thus contains zero entropy. Even more popular 
intuition is that information is negative entropy as was suggested by 
Brillouin (1962 and Woolhouse, 1967). The reasoning of this conclusion 
is that the file, before it received, is unknown, and thus contains entropy, 
which reduced with every bit that Alice reads. Therefore, information is a 
reduction of entropy. 

Nevertheless, Shannon, in his first theorem, defined the information as 
the maximum amount of data that can transmitted in a noiseless channel. 
His expression, which is identical to the Gibbs entropy, represents the 
randomness of the distribution of the bits in a file (Shannon, 1949). The 
Shannon information tells us nothing about the actual content of a file and 
has no connection to it. When Alice receives a file of Λ bits, all we know 
is that there are maximum 2Λ different possible (configurations) contents. 
In some of these 2Λ files, the distribution of the bits correlated. In others, 
the distribution of the bits is random. When Alice receives a Λ bits 
random file, the amount of the Shannon information is I = Λ bits. If the 
distribution of the bits is not random Bob can compress the file and send a 
shorter file of length I such that I < Λ or in general I ≤ Λ. 

How many random distributions are there as compared with correlated 
distributions in a file? Jaynes has shown (Huang, 1987; Gupta, et al. 
2005; Newman, 2006) that if we have a statistical ensemble, the most 
honest guess about its distribution is the Shannon information. The 
finding of Jaynes, in simple words, is that there are much more random 
distributions than there are correlated distributions.  The work of Jaynes 
suggests that for a statistical ensemble the second law is a mere 
probabilistic effect. If we do not know anything about a statistical 
ensemble, our best bet is that it is random. If we reshuffle a distribution of 
something, it will become more random. 

Jaynes work is applicable to information. If we add a noise to a file, it 
will probably increase the amount of the Shannon information in the file. 
Nevertheless, the subjective meaning of the message in the file may be 
lost. 
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While the similarity between the Gibbs entropy and the Shannon 
information is clear, there is a distinctive difference between them. 
Information is a logical quantity; the Shannon information is a 
mathematical entity. It is neither a function of the file energy nor a 
function of the temperature, as it is not made of a materialistic substance. 
A binary information file contains only "1"'s and "0"s. Entropy on the 
other hand, is a physical quantity and has a physical dimension. The 
physical meaning of the entropy derived from the second law. The basic 
outcome of the second law is that heat flows spontaneously from a hot 
bath to a cold bath; it does so, because in this process the entropy 
increases. 

Another difference is that entropy is a dynamic quantity while 
information is a quenched quantity. Boltzmann obtained his 
approximation of the Clausius entropy for an ideal gas, which contains a 
large number of atoms exchanging energy constantly (Jaynes, 1988). The 
Boltzmann statistics contains inherently the canonic non-deterministic 
Maxwell-Boltzmann distribution. This distribution is a cornerstone of 
mechanical statistics as well as of quantum mechanics. Nevertheless, the 
canonic distribution is not applicable to information, which is a quenched 
quantity. 

 

The paper in a nutshell 
In other publications (Kafri, & Kafri, 2013; Kafri, 2007a; 2007b) it 

was shown that if we assign energy to the information bits, it is obtained, 
from the 2nd law of thermodynamics, that the Shannon information is 
entropy, a random file is a state of equilibrium and the temperature is 
proportional to the bit's energy. In this paper, a toy model used to describe 
a generic file transmission from Bob to Alice using electromagnetic 
radiation. Bob is using a blackbody-based transmitter that enables him to 
control the temperature and the frequency of the radiation. In addition, 
Bob can modulate the radiation. It shown that when Bob transmits to 
Alice a low occupation number energy (the quantum limit), the 
thermodynamic functions of the energy transmission are the well-known 
canonic ones. However, when Bob increases the occupation number of 
the photons, a power-law distribution replaces the canonic distribution, 
information replaces the entropy, and the canonic statistical physics 
becomes a statistics of harmonic oscillators. In the high occupation limit, 
the obtained normalized thermodynamic functions are independent of any 
physical quantity and/or physical constant and therefore become purely 
logical functions.  A qualitative discussion about whether nature prefers 
generation of information or generation of canonic entropy yields a 
conclusion that the two are equally welcome. 

In section II, a toy model, in which Bob sends a collimated light beam 
to Alice, is described. Bob is using a blackbody radiation source that 
delivers energy per mode according to the Planck's statistics. Bob can 
change to his wish (without any physical limitations) the temperature of 
the source and select a frequency or frequencies of the radiation by a 
spectral filter. In addition, Bob has a shutter that enables him to modulate 
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the radiation within the limitations of the laws of optics. It assumed that 
in equilibrium all the radiation modes that Alice receives have the same 
temperature.  

1. In section III, the quantum limit, it assumed that the energy of the 
photons is much higher than the average energy. The Planck equation 
yields the familiar canonic distribution. The obtained entropy of the 
radiation is the Gibbs expression and the ratio between the number of the 
photons and the number of empty modes is the Maxwell-Boltzmann 
distribution. 

2. In section IV, the high occupation limit, Bob is using his toy model 
to reduce the energy of the photon as compared with that of the average 
energy of the mode to the extent that the energy can added or removed 
smoothly to the mode. In this limit, the number of the photons is much 
larger than the number of the modes. The Bose-Einstein equation yields 
that each mode is a harmonic oscillator. It means that each mode's entropy 
is one Boltzmann constant, and the temperature is a linear function of the 
mode's energy. 

3. In section IV-a, modulation and information, Bob is modulating the 
sequence of the harmonic oscillators to a binary file. The Shannon 
information is calculated. It shown that in a random file, when the number 
of the harmonic oscillators (energetic modes) is equal to the number of 
the vacancies (empty modes), the Shannon information is equal to the 
length of the file. In other cases, it shown that the amount of the Shannon 
information is smaller. 

4. In section IV-b, equilibrium and entropy, the entropy of the file, 
which consists of harmonics oscillators and vacancies, is calculated. It 
shown that the Shannon information is the Gibbs mixing entropy. The 
Boltzmann H function is equivalent to the amount of information H in a 
correlated file.  

In section IV-c, logical quantities, it shown that the normalized 
entropy in Bob's transmission is a function that does not contain any 
physical variable or constant. This is with contradistinction to a canonic 
entropy transmission. Therefore, the normalized entropy, in the high 
occupation limit, is a logical quantity. 

In section IV-d, logical equilibrium –the Benford's law, Bob generates 
a set of modes in which each represents a digit. A possible way to 
construct such a set is to put in the mode that represents the digit N, N 
times more energy than the mode that represents the digit 1. To obtain 
equilibrium (equal temperature in the Planck distribution) Bob has to use 
either a different frequency for each digit-mode or alternatively a different 
density for each digit in a file. The obtained normalized distribution 
function of the digit-modes in equilibrium is a pure logical function, 
which is not a function of the initial temperature and/or frequency chosen 
by Bob. The result is identical to the famous Benford's law. 

In section IV-e, energy distribution, the power-law, the log of the 
occupation number vs. the log of the photon energy divided by the 
average energy plotted for the Planck distribution. It is seen that in the 
low occupation number, a straight line of slop, –1, obtained. This 
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behavior appears in many quantities in nature (a good example are the 
natural nets). With analogy to the momentum Gaussian distribution 
obtained from the canonic energy distribution if we consider the electric 
field of the radiation instead of the energy, a –2 slope obtained. Slopes 
around "-2" appear in many sociological statistics (Newman, 2006). 

In section V, mixed systems, the question whether information can 
survive side by side with the canonic thermal entropy in equilibrium is 
discussed. 

In section V-a, Hooke's law harmonic oscillator, a thermodynamic 
analysis of a mixed system consists of a single Hooke-law oscillator 
coupled to a heat bath at room temperature is presented. It is shown that 
the amplitude increase of a Hooke-law oscillator has the Carnot 
efficiency, similar to that of the amplification of a file (Kafri, 2007a; 
2007b). A Hooke-law oscillator will relax its energy spontaneously to the 
heat bath as the relaxation increases the entropy. 

In section V-b, information vs. thermal entropy, it shown that in the 
case of the blackbody emission, both the low occupation number photons 
as well as the high occupation number photons coexist in equilibrium. 
Therefore, it concluded that information and thermal entropy are equally 
welcome. 

In section VI, summary and discussion, a table that shows the 
differences between the thermodynamic functions in the canonic 
distribution and in the high- occupation harmonic distribution presented. 
In view of these differences, the meaning of the logical quantities 
obtained in the thermodynamic theory of communication discussed. It 
concluded that, in equilibrium, inert quanta distributed in modes yield a 
power-law/Bedford-law distribution. It suggested that the informatics 
aspect of life is a tendency for reproduction and a compressed 
communication.  

 

The Toy Model 
In Fig. 1, the setup in which Bob sends Alice a flux of photons 

described. The analysis based on the classical Carnot Clausius 
thermodynamic. In the classical thermodynamic, the entropy is S ≥ Q/T 
where the equality sign stands for equilibrium, Q is the heat that Bob is 
sending or Alice is receiving, and T is the temperature of the transmitter 
or the receiver. This inequality is the Clausius inequality (Kestin, 1976) 
derived directly from the efficiency of the Carnot cycle (Jaynes, 1988). 

 Bob is sending a sequence of photons in a single longitudinal mode to 
Alice, as described in Fig.1. Bob has a blackbody at temperature TH that 
emits a blackbody radiation. Bob attaches a pinhole filter (PH) of a 
diameter of λ2 with a positive lens in order to obtain a collimated single 
longitudinal mode. After the pinhole, spatial filter Bob attaches a spectral 
filer and a polarizer (SF) that passes only the frequency ν, with a spectral 
width Δν. Here λ and ν are the wavelength and the frequency of the 
transmitted signal. The spectral width determines the number of the 
temporal modes. Bob can modulate the photons beam by using a 
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mechanical or electro-optical shatter.  Photons are bosons with a zero 
chemical potential. Therefore the number of photons n in a single mode 
obtained from the Planck distribution (Gershenfeld, 2000) is given by 

1

1
/




HBTkhi
e

n


        (1) 

Where i index the temporal modes, hν is the energy of the photon, TH 
is the temperature of the Bob's source and kB is the Boltzmann constant. 

 

 
Figure 1. A setup for a single transverse mode energy transmission from Bob to 

Alice 
 
Alice uses a detector to receive the message. In general, Alice uses a 

similar positive lens, a filter and a detector at the focal length of the lens. 
If the detector of Alice is at a temperature TL = TH, namely the temperature 
of the transmitter of Bob, the noise emitted by the detector will be as 
strong as the signal, and Alice will not be able to read the signals. 
Therefore, a prerequisite requirement for energy transmission from Bob 
to Alice is that TH > TL. In practice, Bob can heat his blackbody to a 
temperature limited by the physical properties of the blackbody's material. 
However, we assume that Bob does not have such limitations and he can 
produce a beam as hot as a laser beam to his wish. In addition, Bob can 
vary the frequency that he send. In practice, the wavelength of the 
radiation cannot exceed the diameter of the blackbody; nevertheless, we 
let Bob enjoy the benefit of a toy model. Hereafter, two limits discussed 
the quantum limit in which hν >> kBT and the high occupation limit in 
which hν << kBT.  

 

The Quantum Limit 
In the quantum limit, the energy of the photon hν is much higher than 

the average energy, kBT, of a mode emitted from a thermal bath (the 
blackbody). Therefore, classically it is impossible to emit a photon. 
However, when many modes are collecting their energies together they 
emit a single high-energy photon in an arbitrary (lucky) mode. In other 
words, when n << 1, it assumed that a group of 1/n modes will emit a 
single photon in an unknown mode of the group. Occupation numbers 
smaller than one exist in many systems in physics i.e. in ideal gas. In this 
case Eq(1) yields,  
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Which is the canonic distribution. Consider a sequence of Λ temporal 

modes emitted from a radiation source, which is not in equilibrium. Non-
equilibrium state means that any mode may have its own temperature. 

The number of photons in the sequence is 


1i

in . The average energy of a 

single mode is qi = nihν. The temperature is calculated from Eq.(2) to be,  
Ti = -hν/ kBlnni.. The entropy of a single mode will be Si = qi /Ti , or 

iiB nnk ln . Since the entropy is extensive, the total entropy of a 

sequence of Λ modes is, 
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When ni<<1, ni = pi and Eq.(3) is simply the Gibbs entropy. Assuming 

that all ni are equal to n (which means an equilibrium state as all the 
temperatures Ti are equal to T), we obtain from Eqs. (3&2); 
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The entropy of the sequence of Λ temporal modes, in the quantum 

limit, is a function of the mode energy and its temperature. Any loss of a 
photon will change the entropy as well as any fluctuation of the source 
temperature.  

 

The High Occupation Limit 
When the source is hot and/or the frequency is low such that hν << 

kBT, Eq(1) yields, 
 
nihν= qi =kBTi   or Si= kB                                                                    (5) 
 

This is the well-known relation of a harmonic oscillator. In this limit, 
the photon energy is negligible as compared with the average energy of 
the mode, and therefore energy can removed or added in a continuous 
way. The uncertainty of ½ hν is also negligible. To some extent, it is a 
surprising result. Intuitively, we expect from one mode, which contains 
many photons, to have zero entropy. Nevertheless, one kB is a very small 
amount of entropy, i.e. a laser mode, which sometimes contains as much 
as 1020 photons, has the same amount of entropy as one vibration mode of 
a single molecule. The Gibbs, Boltzmann or Von-Neumann entropies 
yield null entropy for a single mode radiation, as they are only an 
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approximation of the entropy for a statistical ensemble (Jaynes, 1965). 
Finite entropy to a single mode is necessary, as entropy is an extensive 
quantity and the emission of entropy by a blackbody radiation is the sum 
of the single modes emission. Therefore, if a single mode would not carry 
entropy, a blackbody would not emit entropy as well.      

When Bob is using his Blackbody (in this case, he will prefer a CW 
laser) and sending Alice Λ classical modes, the total entropy that is 
removed from his source is, 

 

B

i

i kSS 


1

,       (6) 

 
In the next two sections, it shown that entropy in the high occupation 

limit is not a simple sum of the entropies of the modes. A sequence of Λ 
oscillators is not always a state of equilibrium since we can add as many 
empty modes as we wish. Therefore, Eq.(6) is a lower bound of the 
entropy. The entropy defined only in equilibrium. The equation of the 
entropy can used away from equilibrium, however the obtained value 
(usually known as the Boltzmann -H function) is not unique and is always 
smaller than the entropy (Huang, 1987). 

The entropy of a single oscillator in the high occupation limit is not a 
function of the energy or of the temperature. In fact, when a mode divided 
to N fractions, each fraction, when received, carries the same amount of 
entropy as the undivided mode. It was shown previously (Kafri, 2007a; 
2007b) that this property is the basis of information transmission and is 
the cornerstone of IT. 

 
Modulation and Information 

A possible way for Bob to modulate his source is to use a shutter (Fig. 
1). Every temporal mode has a duration of its coherence length, namely Δt 
= c/Δν. Where c is the speed of light. Therefore if the shutter is opened for 
a time interval Δt, an amount kB  of entropy is transmitted.  

When Bob is transmitting a file, he possibly starts by sending a header 
to inform Alice about the file length Λ that he intends to send and some 
other information about the kind of compression or the language he uses. 
Usually Alice replies to confirm the acceptance of the header and her 
consent or refusal to receive the data and so on. However, although this 
handshaking process is vital to any communication, it is not discussed 
here. The discussion here assumes that Bob and Alice have pre-agreed 
language, compression, protocol and an open channel of communication.  

If Bob sends L energetic bits in Λ modes where, Λ > L, there are 
several different messages that can be sent. The number of possible 
messages is the binomial coefficient Λ!/( Λ-L)! L!. The Shannon 
information is defined, in bits, as the shortest file I that has this number of 
messages. Therefore, 2I  = Λ!/( Λ-L)! L!.  Hereafter the information will be 
expressed in nats, namely, eI  = Λ!/( Λ-L)! L!. Stirling formula yields, 
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I = ΛlnΛ - LlnL - (Λ-L)ln(Λ-L).     (7)  
 
Under the assumption that all the combinations have equal probability, 

it is seen that if Λ = 2L then I = Λln2 namely, a random file contains the 
maximum amount of information. 

 
Equilibrium and Entropy 

The basic definition of equilibrium obtained from Clausius inequality, 
namely TQS  .  When the heat transmitted divided by the temperature 

is equal to the entropy, the system is in equilibrium. This implies that 
when Q/T is a maximum, the system is in equilibrium. If the system is not 
in equilibrium, the obtained temperature (that is always higher than T) is 
not unique and can yield different values for different histories of a 
system.  

If we designate p≡ L/Λ, then the RHS of Eq.(7) can be rewritten as, 
 
I = -Λ{ pln p + (1- p)ln(1 – p)}     (8)
  

Consider pΛ oscillators, each carries kB entropy, in a sequence of Λ 
modes.  In the setup of Fig 1, each mode has the same frequency and 
temperature. That means that each mode is in equilibrium with the 
emitting Blackbody and with the other modes. However, there is mixing 
entropy of the energetic modes and the empty modes. The mixing entropy 
of the ensemble a la Gibbs is, 

 
)}1ln()1(ln{ ppppkH B                                              (9)  

 
where H is the Boltzmann H function. The -H function is the entropy 

calculated away from equilibrium such that HS  .  In equilibrium p= 

½, H has a minimum and Eq.(8) yields that  2ln BkS . 

Therefore it is possible to conclude that entropy and information are 
identical and a random sequence is a state of equilibrium. In the case that 
p< ½ one obtains,  
 
 S ≥ - H= kB I                                                                     (10) 

 
Eq.(10) is the Clausius inequality for informatics.  
It worth noting that Eq.(9) yields, in statistical physics, the canonic 

distribution (Kafri, 2007a; 2007b). Consider pΛ energetic particles of 
energy hν in Λ microstates. The energy of the sequence is Q= pΛ hν .The 
temperature is defined a la Clausius as T  = ∂Q/∂S, Therefore, 

∂S/∂p = -Λhν/T = ΛkB {lnp- ln(1-p)} or Tkh Bepp
/

)1(


  

which is the canonic distribution of Eq.(2) for a two level system(see 
table 1) (Kafri, 2007a; 2007b). 
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What is the reason for such different results, in statistical physics and 
in informatics, obtained from the same Eq.(9)? The explanation is that in 
statistical physics, the canonic distribution prevails and the entropy of a 
mode is a function of the energy and the temperature, as is seen in Eq(4). 
Therefore, equilibrium (a maximum entropy) may obtained, for any value 
of hν and T, for any p≤ ½. In informatics the entropy of a mode is not a 
function of the energy or the temperature, therefore equilibrium exists 
only for a single value p= ½. 

 
Logical Quantities 

When Bob modulates the transmitted radiation of the setup of Fig.(1), 
he usually does not care about the coherence length of his radiation 
source. He transmits a sequence of pulses and vacancies of equal length. 
Therefore, each "1" bit will usually carry more entropy than one kB. 
Practically it will carry K= mkB entropy units, were m is some integer (see 
Eq.(6)), therefore Eq.(10) can be rewritten as, 
 
S ≥  KI ,                                                                                      (11) 
 

When Bob transmits a file, all he wants is for Alice to receive 
correctly one of the 2Λ possible files in a Λ bits transmission. However, 
here we are interested for information of this particular transmission. A 
possible way to calculate the amount of information in the transmission is 
to use Eq.(9) to calculate -H/S which is the normalized information. 
Which yield 
 

1
2ln

)1ln()1(ln





pppp

S

H .                              (12) 

 
Eq.(12) is the logical Clausius inequality in informatics. It says that 

the maximum amount of information in a file that has a fraction p of the 
bits "1" or "0" is not a function of K. In fact, Eq.(12) is an inequality, free 
from any physical quantity. 

 
Logical Equilibrium – The Benford's Law 

Eq.(12) demonstrates that the fraction p of the "1" or "0" bits 
determines how far a file is from equilibrium. If p=1/2, it means that a file 
might be in equilibrium. Nevertheless, information transmission not done 
usually in bits. In our everyday life, we are using a much larger amount of 
symbols to communicate. An important set of symbols is the numerical 
digits. A possible way to form a set that represents the nine digits is to use 
nine kinds of modes. Each one contains 1,2,3,4,5,6,7,8,9 energy units 
respectively. What will be the relative distribution of these modes in 
equilibrium? If all the bosons have the same energy, each occupation 
number n yields a different temperature, which means a non-equilibrium 
state. Eq.(1) is rewritten as, 
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)
1

1ln()(
nTk

h
n

B


                  (13) 

 
It seen that as n increases, the temperature increases. A possible way 

to obtain equilibrium, namely an equal temperature for all the digits, is to 
use a spectral filter, with nine different frequencies that can be obtained 
from Eq.(13). An alternative way to obtain an equilibrium state is to keep 
Φ constant and to distribute the nine symbols according to a density 
function )()( nn  . Such that, 
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1

1ln()(
i

i
n

n                    (14) 

 
The relative distribution of digits in equilibrium is, 
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From Eq.(15) it is seen that Φ disappears altogether, similarly to the 

way the normalized entropy is independent of the frequency and 
temperature and became information, in the high occupation limit. Since 

)10ln()
1

1ln()(
9

1

9

1


 i ii

i
n

n . Therefore, 

 

)
1

1(log)( 10

i

i
n

n                    (16) 

 
 Eq.(16) is the Benford's law (Hill, 1996; Benford, 1938; Hill, 1986) 

that was found empirically in many statistical ensembles of digits that 
originate from natural sources and are not produced by artificial 
randomizers. 

 
Figure2. The Benford's law is the probabilities of the digits in many numerical 

data files. 
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It is worth noting that with the cancellation of Φ we see that the 
normalized distribution function is independent, not only of the 
temperature that was chosen arbitrarily in Eq.(13), but also of the energy 
of the boson as well. Moreover, it is free of any physical variable and/or 
physical parameter.  

 
Energy distribution – Power-law 

For a canonic ensemble, the energy distribution obtained from the 

Planck statistics is, iBi Tkh

i en
/

 . The Planck distribution gives 

us the number of photons for any ratio Φ = hν/kBT. Φ may be viewed as 
the relative energy of a photon with respect to the average energy. 
Therefore, the occupation number n of all the modes having the same 
temperature T (in equilibrium) given by, 

 

1

1
/




Tkhi
Bie

n


                  (17) 

 
The setup that describes Eq.(17) is the same one as in Fig.(1), but 

without the spectral filer, therefore all frequencies are transmitted. In high 
occupation number Eq.(17) can be approximate to, 

)
1

1ln(
i

i
n

  or  
ii nln .  We expand lnni around 1 and 

obtain that 
ii nn

11
ln   therefore 1

ln

ln






n
.  In Fig.(2) a plot of lnni 

Vs. lnΦi is shown, for in the classical regime a power-law like distribution 
is obtained, and moreover, the exponential truncation in the quantum 
regime appears. It is worth noting that the only assumption of this curve is 
equilibrium. Namely, all modes are at the same temperature (Gupta, et al. 
2005). 

 

 
Figure 3. A log-log plot of the occupation number versus the relative boson 

energy 
 
Since many phenomena that related to natural processes exhibit the 

power-law distribution (Newman, 2006) it attracts a considerable 
attention. To mention few: the frequency use of words, the number of hits 
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of web sites, the copies of books sold, the population of cities etc. The 
slopes obtained from the empirical power-law distributions are around –1. 
This is similar to the Gaussian distribution of momentum that obtained 
from the exponential distribution of energy in the canonic limit. A 
connection of the Planck statistics to complex networks was discussed 
previously (Bianconi & Barabasi, 2001) and the similarity between the 
mapping of the Bose-Einstein gas and a network model was discussed. A 
possible explanation, based on the present theory, for the reason why so 
many phenomena exhibit a power-law distribution, found in section VI. 

 

Combined Systems 
 In previous publications (Kafri, 2007a; 2007b) it was shown that for a 

classical ensemble the Shannon information is entropy, an amplifier is a 
Carnot cycle and broadcasting from one antenna to several antennas is a 
heat flow from a hot bath to a cold bath. In addition, an informatics 
perpetuum mobile of the second kind defined. Here it is shown that a 
classical ensemble has a power-law energy distribution while in the 
quantum limit when Φ>>1, the canonic distribution dominates and the 
regular Gibbs-Boltzmann thermal thermodynamics takes place. 
Therefore, the Shannon information and the thermal entropy are two faces 
of the same entropy.  

Under what condition thermal entropy will generated and under what 
condition information will generated? When there are two possible ways 
to generate entropy in a system, the sum entropy will be the combination 
of the two that maximizes the total entropy of the system (Dawkins, 
1976). Hereafter a simple example of such a combined system is 
considered.        

 
Hooke's law Harmonic Oscillator 

Consider a Hooke's law oscillator, at a room temperature T, having a 
spring constant κ and an amplitude AL. The total energy of the oscillator is 

2

2
1

LL AE  . The temperature of this oscillator from Eq(5) is TL=EL/kB. 

To increase the amplitude of the oscillator to higher amplitude EH, a work 
W should applied. The new amplitude will 

HBHLH TkAWEE  2

2
1  . The inequality stands for the 

situation in which the applied work is not with a resonance with the 
frequency of the oscillator and therefore part of the work wasted to heat.  
It is seen that, 

 

H

L

H T

T

E

W
1  ,                                (18) 

 
Namely, the efficiency of the amplification of the oscillator is the 

Carnot efficiency. Increasing the energy of the bits in a file was shown 
(Kafri, 2007a; 2007b) to be a classical Carnot cycle, which comprises of 



 

O. Kafri, (2017). Entropy, Selected Articles…                                                                 KSP Books 

41 

two isotherms and two adiabatic. Here it shown that single oscillator 
amplification is also a Carnot cycle. The Hooke oscillator has a weight of 
a finite mass that affects its frequency. The mass of the weight consists of 
a large number of particles; each particle has its own degrees of freedom. 
Each of these particles carries similar entropy to that of the whole 
Hooke's oscillator, which is a single oscillator. Therefore, the temperature 
of the Hooke oscillator is much higher than the thermal temperature of the 
weight, which is in the room temperature. The Hooke oscillator 
temperature is similar to that of antennas (Kafri, & Kafri, 2013) (for a 
typical cellular antenna was shown to be ~1015K) or for a laser (for a 
0.7µm laser with 1016 photons per mode, is ~1020K) and is of the same 
order of amplitude, namely ~1020K. These kinds of temperatures are 
impossible to obtain by heating up a blackbody by conventional means. 
Nevertheless, these temperatures can obtained by non-thermal resonance 
pumped sources.  

Removing energy from the Hooke's oscillator does not change its 
entropy because it is a harmonic oscillator and therefore it has a constant 
entropy, kB. However, dumping the oscillator's energy to a canonic 
ensemble increases the entropy according to Eq(4). Therefore, the Hooke 
oscillator will dump spontaneously its energy to its thermal bath. This 
example and similar phenomena are responsible for the common intuition 
that the information energy dumped spontaneously into a thermal energy. 
In fact, this is an example of heat flow from a hot harmonic oscillator to a 
cold thermal bath.  

 
Information versus Thermal Entropy 

Does nature prefers the informatics systems or the thermal canonic 
systems? This is an interesting question, as we know that our world 
consists of a mixture of the two. The common intuition, which based on 
the canonical thermal physics, suggests a pessimistic end to any closed 
system, namely, a canonic thermal equilibrium (the heat death that 
suggested by Kelvin). The common intuition suggests that informatics is a 
non-equilibrium phenomenon (Xiu-San, 2007). Since a file, is a sequence 
of harmonic oscillators, at the end, the information's energy will relax into 
a thermal equilibrium exactly as the Hooke's oscillator transfers its energy 
to its bath. However, this is not what the Planck's statistics suggests. As 
we see in Fig. 3, there are much more low energy bosons than high-
energy bosons.  

Eq.(13) suggests that for a given temperature T, when  Φ is decreased, 
n is increased according to, 

 

 )
1

1ln(
i

i
n

                    (19) 

When Φ <1, it means that a boson has less energy than the average. 
When Φ >1 it means that a boson has more energy than the average. 
Eq(19) suggests that in equilibrium there are more poor energy classical 
bosons as compared with rich energy (lucky) canonic bosons. A 
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blackbody radiation is a good example of a mixed system. The number of 
modes in the volume of a blackbody increases with the frequency cube; 
the wavelength of the light limited by the diameter of the blackbody. 
Therefore the occupation number decreases with the frequency according 
to Eq.(17). The result is the familiar Blackbody radiation spectrum curve 
that gives similar amount of energy to the poor photons and to the rich 
photons. Therefore, in blackbody emission, the number of the poor 
photons is much higher than that of the rich photons.   

 

Summary and Discussion 
Based on a toy model, it shown that the Planck distribution, in the 

quantum limit, yields the regular canonic thermodynamics. In the high 
occupation limit, the harmonic oscillator statistics replaces the canonic 
statistics. The harmonic oscillators' statistics differs in several aspects 
from the canonic statistics as is shown in table 1. An important feature of 
this statistics is that the normalized thermodynamic functions like entropy 
and particles distribution do not contain physical quantities. In the 
canonic entropy the exponential term does not canceled out in the 
normalization process. Therefore, the canonic entropy is a function of the 
temperature and the frequency. Any fluctuation of the energy and/or the 
temperature affects its magnitude. In the high occupation limit entropy, 
all the physical variables and parameters disappear and we obtain the 
Shannon information. Therefore, the entropy is not sensitive to any 
fluctuation in the occupation number, the source temperature and/or 
frequency.  It is not even sensitive to the number of modes in a bit. This 
property of the entropy, in the high occupation limit, makes it appropriate 
to convey data.  

 
Table 1. The thermodynamic properties of the Bose-Einstein gas in equilibrium at 
temperature T for photons (with zero chemical potential) for the classical and the 
canonic distribution. p is the probability of the energetic modes and n is the 
occupation number. 

 High Occupation   n >> 1 Canonic  n << 1 
Temperature  
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nh
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
  
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h
T

B ln


  

Equilibrium p= 1 /2 
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h

Be
p

p





1

 

Average mode entropy S = kBln2 
Tk

h

Be
T

h
S


 

  

Energy Distribution Power-law Exponential 
Carnot cycle Amplifie Heat engine 

 
The logical quantities, in the high occupation limit, are therefore 

applicable to many phenomena of our life. The Planck distribution of 
photons is a simple combinatory of states and particles without 
interactions. The only constraint encapsulate in it is the quantization. 
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Namely, it is possible to add or to remove energy from any mode in an 
integer amount of some undivided particle (a quant). As is seen in Eq.(15) 
when we keep the quant size fixed (a constant frequency) and we also 
assumed equilibrium (equal temperature for all the modes), than the 
normalized distribution of the photons is not a function of the energy, the 
frequency, the average energy or the temperature. The physics is faded 
away, and we remain with a statistical system of inert quanta. Systems 
like these are very common in life. Consider the distribution of the 
population of cities. Each city may considered as a mode. When we count 
the number of the peoples in a city, the peoples are, per definition, 
indistinguishable. Since the number of the peoples is quantized, therefore 
this system is identical to that of Eq.(15). Similarly, the number of books 
being sold in a certain period is a homological system to that of the 
population of cities. In this case, the number of the titles is the number of 
the modes and a single copy sold is a quant. The number of hits in the 
Internet is also a system of this kind as the number of the sites is the 
number of modes and a hit is a quant.  

In the derivation of Benford's law Eq.(14) was used, namely, 

)
1

1ln()(
i

i
n

n  . This equation yields slope of "-1". In the 

normalization process Φ disappears. A slope "-2" is obtained if we 
substitute ψ

2(n)= ρ(n), with a phenomenological analogy to the 
substitution of momentum instead of energy in canonic exponential 
distributions to obtain the Gaussian distribution.  

The present model does not consider any interactions between the 
quantized particles. Nevertheless, interactions do exist. If we consider, for 
example, the distribution of the hits among the sites in the Internet, it is 
obvious that there are interactions between the visitors of the sites. The 
interactions might be advertisements by the sites and/or viral spread of the 
recommendations by the visitors. So what is the reason for a somewhat 
oversimplified model without interactions being so effective? A possible 
explanation is that the distribution of the hits is independent of the 
interactions; however, a specific rank of a certain site does depend on the 
interactions. Namely, the interactions are responsible only for the specific 
site location in the distribution. If that is true, removing a several popular 
sites will not change the normalized distribution. Other sites will take the 
place of the removed sites and the distribution will reach equilibrium 
again. Indeed, this is what seen in almost any economical system, namely, 
"there is no empty space". Unlike the derivation of Benford's law, the 
present model does not pretend to be a complete solution to the power-
law distribution in social systems. Nevertheless, it argued that extensive 
equilibrium thermodynamics might predict the quantitative behavior of 
social systems.    

Another notable property of the logical equilibrium is the quenched 
randomness. For the receiver, a random file is content. However, within 
the context of IT, a random file, which is a compressed file, is an 
ensemble of harmonic oscillators in equilibrium, as is seen in Eq(12). An 
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outcome of this conclusion is that files should have a tendency to 
compress spontaneously. Aside from the natural spontaneous noise, we 
are obsessed with compression. In IT we compress files for economical 
reasons. However, an observer in space sees that most of the transmitted 
files on earth are compressed. This observer will rightly, conclude that 
files have a tendency to be compressed. Our tendency to compress seen 
also in art. We find ourselves impressed by an artist who can express a 
complex feeling with a few words, or by a painter who can represent a 
detailed picture with a few lines and colors. The artistic kind of 
compression known in IT as a lossy compression and is very popular in 
multimedia technology. The language is a most powerful compressor; 
sometimes, the amount of information in a short sentence is enormous 
considering the fact that it contains just a few bytes. A notable example is 
the mathematics, which enables to write relatively short formulas that 
describe complex logical processes. It is possible that our tendency for 
symbolism and mathematics is the natural tendency toward equilibrium.  

The last issue and the most intriguing one is how the tendency of 
information to increase affects life. Conventional canonic 
thermodynamics explains how we decompose chemical compounds in 
order to produce mechanical work, and heat to enable our body to 
function properly. This paper suggests that we also want to increase 
information. The increase of information could done by reproduction and 
by broadcasting. It is clear that the present evolution theories are with full 
agreement with the present theory (Dawkins, 1976). The only 
modification required is that reproduction and evolution are spontaneous 
processes. It was shown previously (Kafri, 2007a; 2007b) that 
information is multiplied in broadcasting. Therefore, it is not surprising 
that we are obsessed with a desire to broadcast ourselves. When Bob 
broadcasts a file with I bits to N receivers, he will increase the 
information by NI. A receiver will increase the information by I bits. 
Therefore, it is better, thermodynamically, to broadcast than to receive. 

 It is an observable fact that information and life in their various forms 
increase with time; therefore, it is plausible that aside from the chemistry 
necessary for the existence, life means a reproduction and a compressed 
communication. 
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5. 
Information Theoretic Approach to Social 
Networks 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
he word network, like information, is overly used. For example, in 
Shannon’s theory there are confusions originated from the fact that 
some conceive stored data as information, while Shannon 

information theory deals with a file transmission from a sender to a 
receiver. Similarly, we conceive a network as a static graphical diagram 
of links connecting nodes while actually a network characterized by a 
flow between nodes. For example, the electrical networks conceived as a 
static net of electrical cables connected together; transportation networks 
as a static net of roads and irrigation networks as a static net of pipes, etc. 
However, the flow of electricity, traffic or water is the essence of the 
networks. Many scientific papers ware published about various aspects of 
networks from Erdős & Rényi (1959) to Barabashi (1999; 2002; 2004). 
Many techniques applied in these researches, from graph theory of Erdős 
and Rényi to load distribution and statistics (Kafri, 2009). These diverse 
approaches apply to the many aspects of networks. However, here we 
discuss another kind of networks, which we call “social networks” which 
are in fact communication networks. In these networks, we overlook the 
physical wiring between the nodes and focus solely on the flow between 
them. An example to such nets is the data networks. Most of the people in 
the world are connected somehow by physical data networks. Eventually, 
everyone can communicate with almost everybody. However, the flow of 
the voice signals between the people is varying constantly in time and not 
distributed uniformly among them. These networks are similar to a two 
dimensional fluid. 
 
 
 

T 
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Social Network: definition 
In this paper we adopt a dynamic approach to nets. In our network 

there are 𝑁 nodes which can communicate with all the other nodes with 
no wiring limitations. Moreover, each connection between node 𝑖 and 
node 𝑗 has a value 𝑅 which is a measure of the flow intensity between the 
two nodes. For example, in social networks 𝑅𝑖,𝑗  may be the number of 
communication channels used between node 𝑖 and node 𝑗. In economical 
network 𝑅 may represent the value of a transaction between two nodes. 

Shannon, (1948) in his paper “a mathematical theory pf 
communication”, describes in a quantitative way how Bob communicates 
with Alice via transmitting a “file” to her. The file is a sequence of bits 
where each bit can be either zero or one. When Alice receives the 
sequence of bits, she explores their value and extracts the content that 
Bob sent her. Shannon defined the entropy of the files as the logarithm of 
the possible different contents that the sequence may contain. Since N bits 
file has2𝑁 possible different contents, the entropy of the file is 𝑁 ln 2. 
Engineers are using, for their convenience, base 2 logarithm and therefore 
the Shannon entropy in this base is identical to the length of the file,𝑁 
bits. 

Basically, Shannon’s theory deals with a one way communication 
between a sender (Bob) and a receiver (Alice) in which the sender send 
one or several bits to a receiver. Bits carry uncertainty which is expressed 
by the entropy. After reading and interpreting the file, the receiver can 
find its content 

In this paper we describe a group of 𝑁 senders. Each of these senders 
can send and also receive information from the other 𝑁 − 1 members of 
the group. We call the communication group of 𝑁  senders/receivers a 
network. We also call each one of the 𝑁  senders/receiver a node. In 
addition, we call a one way single communication channel connecting 𝑁𝑖  
to 𝑁𝑗 a link. We designate 𝑅𝑖,𝑗  , as the number of links through which a 
sender 𝑖 can send messages to a receiver 𝑗. Similarly, 𝑅𝑗 ,𝑖  designates the 
number of links used from 𝑗to 𝑖. We assume that there is a total number of 
𝑅 links in the network and 𝑅 can be any integer. The network can be 
described by a matrix: 

 

 
Figure 1. Networks matrix. 
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Where 𝑅 =   𝑅𝑖,𝑗
𝑁 
𝑖=1

𝑁
𝑗 =1 .     

     
The summation on a column 𝑖 is the total links outgoing from node 𝑖 

to all other 𝑁 − 1 nodes. Similarly, the summation on a row 𝑗 is the total 
links entering node 𝑗 from all other 𝑁 − 1 nodes. 

The network described above is different from our standard 
visualization of a net as a static diagram. 𝑅𝑖,𝑗  can vary constantly like a 
two dimensional fluid matrix having two constraints;  

A. 𝑅𝑖,𝑖 = 0 
B. 𝑅𝑖,𝑗 ≤ 𝑅. 
 
Communication and economic networks have such a dynamic nature. 

In this aspect one may compare the network to a two dimensional fluid in 
which there are constant nodes and energetic links that are i.e. pulses 
(classical harmonic oscillator) or any other logical quantity such as 
money, etc. The number of links may represent the bandwidth of the 
communication channel or the amount of the money transferred. 

We can imagine the networks as a two dimensional boson gas with 
𝐾 = 𝑁2 − 𝑁  states and 𝑅 particles. Therefore, we can calculate for it 
entropy, temperature, volume and pressure. 

 

Large Networks Statistics 
The number of microstates 𝑊 of boson gas of 𝑅 particles in 𝐾 states is 

given by 
 

𝑊 =
 𝑅+𝐾−1 !

 𝐾−1 !𝑅!
        (1) 

 
Planck (1901) used this equation assuming that(𝐾 + 𝑅) ≫ 1 , and 

designatingthe “occupation number”𝑛 ≡
𝑅

𝐾
, to obtain his famous result for 

the entropy; 
 

𝑆(𝑅, 𝐾) = ln 𝑊 = 𝐾  𝑛 + 1 ln 𝑛 + 1 − 𝑛 ln 𝑛    (2) 
 
We define large network as a network in which𝑅 ≫ 𝐾,In this network 

it is possible to remove energetic links from it with a negligible change in 
its statistical properties. The thermodynamic analogue to the large 
network is an infinite thermal bath. 

The entropy of the large net is given by 𝑆 𝑅, 𝐾 = ln 𝑊 (Kafri, 2014). 
When one link added, the entropy is given by, 

 

𝑆 𝑅 + 1, 𝐾 = ln
(𝑅+𝐾) 𝑅+𝐾−1 !

 𝑅+1 𝑅! 𝐾−1 !
= ln

𝑅+𝐾

𝑅+1
+ 𝑆(𝑅, 𝐾)   (3) 

 
In the case that𝑅 is a large number than 𝑅/(𝑅 + 1) ≈ 1and, 
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𝑆 𝑅 + 1, 𝐾 ≈ 𝑆 𝑅, 𝐾 + ln
𝑛+1

𝑛
      (4) 

 

Carnot Efficiency 
Suppose we have two large networks 𝐻  and 𝐿  having occupation 

numbers 𝑛𝐻and 𝑛𝐿 . We remove 𝑄 links from the 𝐿 net and put them in 
the 𝐻 net. If 𝑛𝐻 > 𝑛𝐿 than the entropy of the 𝑄, 𝐿 net linksis higher than 
𝑄, 𝐻 net link is, and the total entropy will be decreased. Therefore, we 
must add 𝑊 links to the 𝐻 net, in order to avoid entropy decrease such 
that, 

 
𝑄 ln[(𝑛𝐿+1)/𝑛𝐿] ≤  𝑄 + 𝑊 ln[(𝑛𝐻 + 1)/𝑛𝐻]      or, 
 

𝑊 ≤ 𝑄{1 − ln
𝑛𝐻  𝑛𝐿+1 

𝑛𝐿 𝑛𝐻+1 
}         (5) 

In the case that 𝑛𝐻, and 𝑛𝐿 ≫ 1 then, 
 

𝑊 ≤ 𝑄(1 −
𝑛𝐿

𝑛𝐻
)        (6) 

 
Equation 6is Carnot inequality for networks. 
 

Large Networks Temperature 
The definition of temperature is related to the definition of entropy. In 

classical heat engine the Carnot efficiency is, 
 

𝑊 ≤ 𝑄(1 −
𝑇𝐿

𝑇𝐻
)        (7) 

 
Where 𝑊  is the work, 𝑄 is the heat (energy removed or added) and 𝑇 

is the temperature. The occupation number 𝑛is related in the classical 
limit of blackbody radiation (photons) 𝑛 ≫ 1 to the temperature via, 
 
𝑛ℎ𝜈 = 𝑘𝐵𝑇        (8) 

 
Here ℎ is the Planck constant,𝜈 is the oscillator frequency and 𝑘𝐵  is 

the Boltzmann constant. 
Therefore, if we substitute for a constant frequency, 𝜈, in equation 6 

we obtain equation 7.  
We can calculate the temperature directly from, 
 

𝑇 =
𝑄

𝑆
 

 
In equation 4 we obtained the entropy increase by adding one link 

𝑄 = 1, namely, 
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𝛥𝑆 = ln
1+𝑛

𝑛
. 

 
Therefore, 
 

𝑇 =  ln
1+𝑛

𝑛
 
−1

          (9) 

 
This result can also be obtained from Planck equation (2), 
 

𝑇 =
𝜕𝑅

𝜕𝑆
 

𝜕𝑆

𝜕𝑅
=

1

𝐾

𝜕

𝜕𝑛
𝐾 (𝑛 + 1) ln 𝑛 + 1 − 𝑛 ln 𝑛 = ln

1+𝑛

𝑛
=

1

𝑇
              (10) 

 
We see that the two ways yield the same result. 

In the lim𝑛→∞ ln(1 +
1

𝑛
) =

1

𝑛
   and, 

 
𝑇 = 𝑛                           (11) 

 
This result is consistent with equation 6. 
 

Large networks Volume 
The volume of the large net is the number of its states 𝐾. This is the 

major difference between a gas and a large net. In the linear world, and 
therefore in our intuition, the volume is an extensive quantity. However, 
in nets the number of nodes is the extensive quantity. Since 𝐾𝑖 = 𝑁𝑖(𝑁𝑖  -
1) and 𝑁 is extensive, therefore 𝐾 is not extensive, i.e. when we combine 
two nets 1 and 2,  𝑁 = 𝑁1 + 𝑁2 and, 

 
𝑉≡ 𝐾=  𝑁1 + 𝑁2  𝑁1 + 𝑁2 − 1 = 𝐾1 + 𝐾2 + 2𝑁1𝑁2 

 
Or for large nets, 

 

𝑉≈ 𝑉1 + 𝑉2 + 2 𝑉1𝑉2 
1

2 =   𝑉1 +  𝑉2 
2                   (12) 

 
Namely, the volume of the combined net is greater than the sum of 

their volumes. This is a counterintuitive result. When we combine two 
networks there is an expansion as a result of the increase of the number of 
states. Combining nets at constant number of links (adiabatic process) 
results in cooling and entropy increase. This is an explanation to a known 
phenomenon that networks tend to merge. It is well known that entropy 
increase in adiabatic process does not exist in ideal gas thermodynamics.  
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Large Networks Pressure 
The gas law states that the pressure of the gas multiplied by its volume 

is a measure of the energy of the gas. In our case the particles are 
identical. Therefore, the energy of the net is the number of its links. 

 
Ρ𝑉 = 𝑅= 𝑉𝑇,                         (13) 

 
whereΡ is the pressure and 𝑅 is the number of the particles. With 

analogy we write  
 

Ρ = T ≈ 𝑛                   (14) 
 
The pressure of a net is a measure of the tendency of two nets having 

different pressures to be combined together to equate their pressure and 
temperature to equilibrium, and thus to maximize the total entropy. Due 
to the nonextensivity of the volume, the combined pressure of two nets 
may be lower than the pressure of each one of them separately.  

 

Large Networks Entropy 
From equation 2 for large nets 
 

𝑆= 𝑉 𝑛ln  
1+𝑛

𝑛
 + ln 𝑛+ 1  or, 

𝑆=𝑉lim𝑛→∞  ln  
1+𝑛

𝑛
 
𝑛
+ ln 𝑛+ 1  ≈ 𝑉[1 + ln(𝑛+ 1)] ) ≈ 𝑉ln(1 + 𝑛)                     (15) 

 
Example 
We take two large nets 1 and 2 with known pressure and volume. We 

combine them together. What will be the pressure and volume of the final 
net? 

The solution for ideal gases is simple: 
 

Ρ1𝑉1 + Ρ2𝑉2 =  𝑅1 + 𝑅2 𝑘𝐵𝑇 
 
Or the temperature of the combined gases is, 

𝑇=
P1𝑉1 + Ρ2𝑉2
 𝑅1 + 𝑅2 𝑘𝐵

 

 
And the pressure of the final gas is, 
 

Ρ =
Ρ1𝑉1 + Ρ2𝑉2
𝑉1 + 𝑉2

 

 
For nets, the result is affected by the non-extensive nature of the nets 

volume. The temperature is the occupation number. Since 𝑅 is extensive, 
therefore, 
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𝑅= 𝑅1 + 𝑅2 = 𝑛1𝑉1 + 𝑛2𝑉2   and 

𝑇≈ Ρ ≈ 𝑛≈
𝑃1𝑉1+𝑃2𝑉2

  𝑉1+ 𝑉2 
2                   (16) 

 

Numerical example 
Suppose we have two nets, each with 50 nodes; one has occupation 

number of 50 and the other of 100. The two nets are combined. What will 
be the value of the thermodynamic quantities in equilibrium of these two 
combined nets? 

The net law is P𝑉= 𝑅 
Where Ρ  is the pressure=temperature=occupation number, 𝑉 is the 

number of states, 𝑅 is the number of links. 
 
For net 1: 𝑉1 = 50 × 49 = 2,450𝑅1 = 2450 × 50 = 122,500𝑇1 = P1 = 50 
Foe net 2: 𝑉2 = 50 × 49 = 2,450𝑅2 = 2450 × 100 = 245,000𝑇2=Ρ2 = 100  
In the combined net:  𝑉= 100 × 99 = 9,900 ,𝑅= 367,500𝑇= Ρ = 37 
 
The entropy of net 1 is 𝑆1 = 2450[1 + ln 51] =  12,034, the entropy of 

net 2 is𝑆2 = 2450[1 + ln 101] =13,732, and the entropy of the combined 
net is 𝑆= 9900[1 + ln 38] = 45,648. The entropy increase is then 19,882. 

This result demonstrates the major difference between a net and an 
ideal gas. When we combine nets, the temperature and the pressure drop 
drastically as a result of the entropy increase originated from the states 
generation in the combined net. This exhibits the tendency of nets to 
combine.  

 

Summary and Applications 
Is there any value to thermodynamic analysis of networks? This 

question was probably asked about information theory 70 years ago. It 
was possible to send files from Bob to Alice without information theory. 
Actually Samuel Morse did it 100 years before Shannon’s time. However, 
the quantitative work of Shannon enables to find limits on file’s 
compression. Similarly, thermodynamic analysis of networks has already 
proved itself to be useful in showing that the distribution of links in the 
nodes in large networks is Zipfian (Kafri & Kafri, 2013). If we define the 
wealth of a node as the number of links that is has, we see that combining 
two nets does not increase the wealth but reduces the temperature. 
Reducing the temperature enables higher free links (free energy), and 
therefore higher data transfer on the same infrastructure. Equilibrium 
thermodynamics proved to be an important tool in engineering, chemistry 
and physics. Applying these tools to sociological networks dynamics may 
prove to be of some use.  For example, defining temperature to a net may 
help in our understanding of data flow. Zipf distribution may help in 
finding the stable inequality of links (Kafri & Kafri, 2013).  

In a previous paper (Kafri, 2014) a similar calculation was made for 
the entropy increase when a node is added to a net. The result obtained is 
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similar to that of equation 15. Namely, each node generates about 
2ln(1 + 𝑛) entropy. This result quantifies the entropic benefit of joining the 
crowd (high linkage nets or hot nets). In this paper we found that the 

entropy generation caused by adding a link to a net is ln(1 +
1

𝑛
) ≈

1

𝑇
. It 

means that with contradistinction to a node, a link will favor joining a 
network with lower linkage (colder net), which represents the tendency of 
links (energy) to flow from hot to cold. One should note that the entropy 
generation by adding link to a net is with accordance to Benford’s law 
(Kafri & Kafri, 2013). 

The concept of non-extensive volume can also describe an accelerated 
expansion without energy. 
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6. 
Information Theory and Thermodynamics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Introduction 
hannon information and Boltzmann entropy have the same 
mathematical expression. However, information conceived as an 
opposite of entropy. Brillouin in his book suggested that 

information is negative entropy (Brillouin, 1962). Many view information 
as a logical sequence of bits of some meaning as oppose to a thermal 
state, which is a state of randomness. The known scientific knowledge 
does not support this mystic idea.  Shannon has shown that the higher the 
randomness of the bits in a file, the higher the amount of information in it 
(Shannon, 1949). The Landauer and Bennet school (Bennet, 2003) 
suggests that the randomness of the bits in a file related to Kolmogorov 
complexity (Li & Vitanyi, 1997). This claim may give an impression that 
the Shannon information is a meaningful subjective quantity. However, 
according to the Shannon theory a compressed file, containing 
meaningful information has similar amount of information as an identical 
file, with one flipped bit that cannot be decompressed and therefore, for 
us the receivers, it is just a noise.  

In this paper, a thermodynamic theory of information is proposed. It is 
shown that Shannon information theory is a part of thermodynamics, and 
that information is the Boltzmann -H function. Therefore, information has 
a tendency to increase the same way as entropy.  

The information increase observed in nature attributed to a specific 
mechanism rather than to a natural tendency. Here it is proposed that 
increase of information as increase of thermal entropy, is caused by the 
second law of thermodynamics. 

To support this claim it is required to calculate, for informatics 
systems, the quantities in Clausius inequality (which is the formulation of 

S 
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the second law), namely, entropy, heat, and temperature and to define 
equilibrium.  

In section I, the classical thermodynamics of heat transfer from a hot 
bath to a cold bath reviewed together with the basic definitions of 
entropy, heat, temperature, equilibrium, and the Clausius inequality.  

In section II, a calculation of the entropy, heat, temperature, and the 
definition of equilibrium for the transfer of a one-dimensional two-level 
gas from a hot bath to a cold bath according to statistical mechanics 
provided and an analogy to Clausius inequality is shown.  

In section III, an analysis of the transfer of a frozen one-dimensional 
two-level gas (a binary file) from a hot bath (a broadcasting antenna) to a 
cold bath (the receiving antennas) provided. A temperature is calculated 
to the antenna that, together with the transmitted file information 
(entropy) and its energy (heat), is shown to be in accordance with classic 
thermodynamics and the Clausius inequality. Therefore, It is concluded 
that in the absence of thermal equilibrium information is entropy  

In section IV, these results used to calculate a thermodynamic bound 
on the computing power of a physical device and in section V, a 
thermodynamic bound on the maximum amount of information that an 
antenna can broadcast is calculated. 

 

Classical thermodynamics of heat flow 
Clausius deduced the second law of thermodynamics from Carnot's 

calculation of the maximum amount of work W that can be extracted 
from an amount of heat Q transferred from a hot bath at temperature TH to 
a cold bath at temperature TC (Kestin, 1976).  Carnot used in his machine 
an ideal gas as a working fluid, and the gas law for his calculation.  The 
Carnot efficiency is,  

 
η ≡ W∕Q η ≤ 1 – TC /TH.                                                 (1) 
 

Namely, the maximum efficiency η of a Carnot machine depends only 
on the temperatures. To obtain the maximum efficiency the working gas 
should obey the gas law, therefore, the machine has to work slowly and 
reach equilibrium at any time. Clausius (Kestin, 1976) assumed that 
Carnot efficiency is always true no matter what mechanism or working 
fluid is used. That means that there is no dependence on the ideal gas law. 
Clausius concluded that if the Carnot efficiency is always true, there is a 
quantity, entropy S, that defined in equilibrium (the equality sign) and can 
calculated according to, 

 
S ≥ Q/T                                                      (2) 

 
When a system is not in equilibrium, Q/T is smaller than the entropy. 

This inequality reproduces the Carnot efficiency. However, it reveals 
more than one would expect.  The entropy change S is equal to Q/T only 
in equilibrium. Out of equilibrium Q/T is smaller than entropy. Therefore, 
if we assume that any system has a tendency to reach equilibrium, any 
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system tends to increase Q/T. Clausius assumed that taking a system out 
of equilibrium requires work, which will also eventually reach 
equilibrium (namely it will thermalized) and, therefore the entropy of a 
closed system tends to increase and cannot decrease. Temperature and 
entropy defined at equilibrium and the temperature can calculated as, 

 
T = (Q / S)equilibrium                                                   (3) 

 
This definition of temperature accepted to be always true. 
Now I calculate a simple example of the entropy increase in heat flow 

from a hot thermal bath to a cold one (see Figure 1).  
 

HT

H

H

T

Q
S 

C

C

T

Q
S 

CT

Hot bath

Cold bath

 
Figure 1. The entropy increase in spontaneous energy flow from a hot thermal 

bath to a cold thermal bath. 
 
When we remove an amount of energy Q from the hot bath, the 

entropy reduction at the hot bath is Q/TH . When we dump this energy to 
the cold bath, the entropy increases by Q/TC . The total entropy increase is   
S = Q/TC  - Q/TH  . One can see that if the process is not in equilibrium S > 
Q/TC  - Q/TH  . In general, 
 
S ≥ Q/TC  - Q/TH                                                                                     (4) 
 

 In sections II and III I will give an analogy to this example for 
statistical physics and for information theory. 

 

Statistical Physics of one-dimensional two-level gas 
The entropy defined in statistical physics as klnΩ, where Ω is the 

number of microstates (combimations) of a system and k is the 
Boltzmann constant (Landau & Lifshits, 1980). We will use this 
definition to calculate the thermodynamic quantities and the Clausius 
inequality for a system that resembles an informatics system.  

We consider a thermal bath at temperature TH, which is in contact with 
a sequence of L states. p of the L states have energy ε and that called 
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"one". L-p of the states have no energy and are called "zero". We analyze 
the thermodynamics of transferring this two-level gas from a hot bath at 
temperature TH to a colder bath TC. The probability of the two-level 
sequence is simple, because the number of possible combinations of p, 
"one" particles in L states is the binomial coefficients (see Figure 2), 
namely, there are, Ω = L!/[ p! (L-p)!] combinations. 

 

 
Figure 2. One-dimension two-level gas with L=6 and p=2. In equilibrium all 

possible combinations have equal probability (the ergodic assumption). If some of 
the combinations have higher probability than others the system is not in thermal 

equilibrium. 
 
The entropy of the system is kln Ω, and the energy of the system is pε. 

The temperature is calculated from Eq. (3). Using Stirlings formula, we 
derive ∂Q/∂S to obtain T. The well-known result is, 
 
p/(L-p) = exp (-ε/kT)  or T = (ε/k)/ ln[(L-p)/p].         (5) 
 

Namely, one parameter T represents all our knowledge on this one-
dimensional two-level gas in equilibrium. This is a well-defined system 
with a well-defined entropy temperature and energy. The equilibrium was 
invoked by giving an equal probability to all the possible combinations of 
the p particles in L states (This assumption is called the ergodic 
assumption Plischke & Bergersen, (2006)). Eq. (5) is a famous result, but 
it should note that this derivation done by deriving Q (the heat) and not 
according to the internal energy of the gas as is done in most textbooks. 
The reason is that in this model, a two-level gas transferred from a hot 
bath to a cold bath, and therefore its energy is heat. If a system is not in 
equilibrium, there are certain combinations that are preferred (a biased 
distribution), and thus the actual combination span (phase space) is 
smaller.  Therefore, the probability Ω of the gas not in equilibrium is 
smaller. Since the energy of the gas conserved, we obtain a higher 
effective "temperature".  Boltzmann called the quantity klnΩ calculated 
for a biased distribution the –H function (Huang, 1987).     
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When the two-level gas is removed from the hot bath, the entropy is 
reduced by SH = pHε/TH =  kpHln[(L-pH) / pH] .  When we dump it to the 
cold bath, we generate entropy SC = pHε/TC =  kpHln[(L-pC) / pC]. 

The total change in the entropy is, 
 
SC  - SH = (kQ /ε)ln{( pH / pC)[(L- pC)/(L-pH)]}≥ Q/TC -Q/TH    (6) 
 

It should be noted that part of the energy, ε( pH - pC ), was transferred 
from the gas to the cold bath.  Obviously Eq. (6) is positive when TC is 
lower than TH , and we see that Eq. (6) is with accordance with Eq. (4), 
namely, the second law (see Fig 3). The inequality stands for the 
transmission of a one-dimensional two-level gas with a biased probability 
of the combinations of the gas. The probability in mechanical statistics 
considered sometimes as a time average on all possible combinations of p 
particles in L states. However, if we look at our one-dimensional two-
level gas at a given short time, we will observe only one of the possible 
combinations. 

 
Figure 3. The entropy increase, due to transmission of one-dimension two-level 

gas, from a hot bath to a cold bath. 
 
In fact, we will see a binary file. Adopting a slightly different point of 

view can solve this paradox, namely, instead of considering the system 
probability as a time average, we consider it as the probability of finding 
a given combination at a certain time. In the ergodic case, in equilibrium, 
any one of the possible combinations can pop up at a given time without 
any preference. In a biased system, not in equilibrium, certain 
combinations will have higher probabilities than others will. This 
approach does not affect the mathematical analysis; however, it will be 
very useful when we consider information. 

 

Information theory of one-dimensional two-level 
sequence 

The Shannon definition of information based on a model of a 
transmitter and a receiver. In his model, a binary file transferred from a 
transmitter to a receiver. A binary file is, in fact, a frozen one-dimensional 
two-level gas. The binary file is not in thermal equilibrium as it is highly 
biased to one possible combination of the bits. As oppose to two-level 
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gas, where the energy of the bit ε fixed, in a binary file the bit energy may 
change continuously.  

Shannon was interested in the maximum amount of information that 
can coded in a given binary file of length L. His famous result is that 
information has the same expression as entropy. However, no connection 
made between Shannon's entropy and thermodynamics. The amount p of 
"one" bits, in a file of length L, is not related to the amount of information 
in the file. This is in contradistinction to the two-level gas, in which the 
energy, the temperature and the entropy are functions of p, (see Figure 3). 
For example, several files having the same amount of "one" bits may have 
a small amount of information. For example if all the "one" bits are in the 
beginning of the file, and the rest of the file has zero bits or any other 
ordered combination (see Figure 4), and some other files may have a 
relatively high amount of information, if the distribution of the bits in the 
file is random. 

 

 
Figure 4. Three possible binary files having the same energy. The higher two files 
have higher order and therefore contain little information and can be compressed 

effectively. The lower file is random and contains maximum information and 
therefore it cannot compressed and is in equilibrium. 

 
The amount of information in a file is a function of the randomness of 

the bits in it, and there is no unique connection between the number of 
bits and the amount of information. The reason that Shannon obtained the 
same expression as Boltzmann is that in two-level gas we have no way to 
predict what combination will be at a certain time, and in a random file 
we have no way to predict what bit will be at a certain time (the 
unpredictable sequence of bits is the useful information). Since 
information and entropy are probability calculations, the same expression 
obtained. Nevertheless, the calculations for the two-level gas and a file 
are different as will show hereafter. With analogy to the transmission of 
two-level gas, we start the thermodynamic analysis of a file transmission 
by considering a truly random sequence of L bits. In this case p = L/2, 
therefore the maximum information that a file of length L can contain 
according to Shannon is I = Lln2. In this case the ratio between the 
number of “one” bits (the energy) and the information (entropy) is 
unique. This is in contradistinction to a file with some correlations in 
which the number of “one” bits p does not determine the amount of 
information. So by assigning energy ε to the “one” bit we obtain Q = L ε 
/2 and S = kLln2. Using Eq. (3) we obtain, 
 
T= Q/S = (ε /k)/2ln2.                                              (7) 

Eq. (7) should be compared with Eq. (5) namely T = (ε /k)/ln[(L-p)/p]. 
We can see that for a file, the temperature depends only on one variable, 
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the bit energy. In a two-level gas, the temperature depends also on p. In 
two-level gas, lowering p reduces the temperature and increases the 
entropy. So according to the second law a two-level gas would tend to 
cool down.  In a file, reducing the bit energy yields a similar result. 
Therefore, according to the second law, a file has a tendency to lower its 
bit energy. We complete the analogy by considering antenna broadcasting 
a binary file to N antennas. A possible deployment of such system is a 
point-radiating antenna surrounded by a sphere, whose area divided to N 
equal receivers. According to Turing model (1936), the hot antenna emits 
the broadcasted file. A receiver antenna receives the broadcasted file but 
with a lower bit energy. Therefore, it is equivalent to a cold bath. Using 
Eq. (4) we obtain, 
 
S ≥ Q/TC  - Q/TH  = NkI – kI.                                   (8) 

 
Eq. (8) shows that the file temperature obtained in Eq. (7) yields 

correctly the increase in information in the broadcasting of a binary file to 
N receivers (which is NI –I). In “peer-to-peer” transmission, as in 
Shannon model, no information increase was involved; therefore, no 
thermodynamic considerations are necessary. Out of equilibrium, there is 
a correlation between the bits, and the amount of information in the file is 
smaller. As a result, the same energy carries less information, therefore T 
is higher and I is smaller. Using Eq. (8) we can rewrite Clausius 
inequality for informatics system as, S ≥ kI. 

2ln2k
TH




kI
T

Q
S

H
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kNI
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Q
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C
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2ln2Nk
TC




IkS 

Hot bath -Broadcasting Antenna

Cold bath - Receiving Antennas

 
Figure 5. The analogy between heat flow from a hot bath at temperature TH to a 

cold bath at temperature TC and an antenna broadcasting a file of bit energy ε to N 
antennas, each receiving the file with bit energy ε/N. In the thermal case the 

entropy increase is ΔS ≥ ΔQ/ TC – ΔQ/TH . However, the same equation ΔS ≥ ΔQ/ 
TC – ΔQ/TH reproduces well the information balance when we use the temperature 

definition from Clausius inequality ΔQ/ΔS for a compressed binary file. The 
antennas deployment is drawn to emphasize the physics only. 

. 
 This implies that Information, like entropy, tends to increase. In a 

general case in complex systems both informatics and thermal processes 
occurs simultaneously. In these cases a transformation of thermal entropy 



 

O. Kafri, (2017). Entropy, Selected Articles…                                                                 KSP Books 

62 

to informatics entropy and vice versa may occur.  Thus, Clausius 
inequality can written as, 
 
S ≥ Q/T + kI                                             (9)  
 It is worth noting that ideally compressed files rarely exist. In order to 
calculate the amount of information in a file, we have to find an ideal 
compressor (Huffman, 1977). Unfortunately, such a compressor does 
exist only asymptotically. The amount of information in an uncompressed 
file, with some correlation between bits, is equivalent to the Boltzmann –
H function, namely the "entropy" of a system out of equilibrium with a 
biased distribution. Shannon, in his famous paper (Shannon, 1949), 
mentioned that information is the Boltzmann –H function, nevertheless it 
called by many entropy. 

 

Example -The Computing power of a Physical 
device 

The units used in communication are the power P and the frequency f 
in bits/sec of an emitter/transmitter and not the bit energy. Therefore, the 
temperature of emitter/transmitter can written as;   
 
T = P/(k f ln2 ).                                                          (10) 
 

It also assumed that any informatics system (i.e. computer) 
surrounded by a thermal bath that emits thermal noise at a temperature Tn.  
To calculate a bound on a computing power of a physical device Turing’s 
model (1936) used. In Turing model erasing one bit and registering it 
again is an example of a logical operation.  In our case the bits rate of the 
file is the maximum computing power. The higher the bit rate, the lower 
the temperature of the file as the bit energy reduced. Since the 
temperature of the file must be kept above the temperature of the noise Tn, 
the frequency has an upper limit. From Eq. (10) we conclude that f ≤ 
P/(kln2T) where T should be about 10 times higher than the noise 
temperature. Therefore, the upper bound on computing power of any 
device is, 

 
f ≤ P/(10kln2 Tn).                    (11) 
 

The powers applied on any computing device, and its ambient 
temperature suffices to give a limit on its computing power. C.H. Bennett, 
in his review on the “Thermodynamics of computation” (Bennet, 2003), 
quotes from a Von Neumann talk that “a computer operating at 
temperature T must dissipate at least k ln2T per elementary act of 
information”. Later Bennett quotes that “in nature per nucleotide or amino 
acid the ratio is 20-100 k ln2T ” with accordance to the present theory.   
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Example - the maximum information that an antenna 
can broadcast 

Consider a point antenna broadcasting a compressed file. The bit 
energy at a receiving antenna having area A will be lower as the distance 
R between the transmitting antenna and the receiving antenna is higher. 
The temperature of the file at the receiver will be  
 
Tr = Tt(A/4ππR2) = PA/[k ln2f 4ππR2].                                                        (12)   

 

The minimal size of both the transmitting and the receiving antenna is 
λλ=c/f , where λ λ is the wavelength of the carrier radiation and c is the 
speed of light. If we assume that the bit energy at the receiver should be 
10 times larger than kT  (a conventional assumption for signal to noise 
requirements), we can calculate from Eq. (12) the maximum distance R 
that an antenna of power P and a frequency f can broadcast to a receiving 
antenna of area A = λλ2. As an example, consider a 50 W, 900 MHz radio 
transmitter. From Eq. (5) we find that the temperature of a broadcasted 
file via an antenna at the size of a wavelength is about 5 1015 K. We can 
cool the file from signal to noise considerations to about 3000  K (ten 
times the ambient temperature). We assume that the receiver has an 
antenna of area A = λλ2, and we obtain that the thermodynamic bound for 
the maximum distance R ≈ 100 Km. This number may appear high, 
however, the receiving antenna is usually linear, and A is less than 1/100th 
of λλ2 and thus R ≈ 10 Km. 

Now we consider a large antenna of radius Rt >> λλ.  Because of the 
second law, it is not possible to detect a signal with a higher intensity 
(temperature) than that of the surface of the antenna.  So we can replace 
Tr with Tt  in Eq. (13), and calculate the entropy leaving the transmitting 
antenna. We can imagine the surface of the broadcasting antenna as a 
superposition of many small antennas of area λλ2 and substitute A = λλ2 in 
Eq. (13). The limit temperature of the broadcasted file can also calculated 
from Eq. (13). The maximum information transmission of an antenna 
over a time interval ΔΔt is given by S/k and yields,  
 
ΔS ≡ PΔΔt/ Tt = k ln2 (f /λλ2) 4ππRt

 2 ΔΔt ≥ k ΔI,                 (13) 
 

This is the Clausius inequality for a broadcasting antenna. This 
expression resembles the results of Bekenstein (1973) and Srednicki 
(1993) that a spherical emitter has entropy that is proportional to its area 
as a black hole or any imaginary sphere.  
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Summary 
This paper deals with the energetic of a file broadcasted from one 

antenna to several antennas (a generalization of Shannon's theory). An 
analogy between information broadcasting from one antenna to several 
antennas to heat flow from a hot bath to a cold bath is drawn. We show 
that: 

5. The Shannon information content I of a file is equivalent to 
the Boltzmann -H function. 

6. The transmitted file energy is equivalent to heat. 
7. A compressed file is a state of equilibrium.   
8. The temperature of the antenna is proportional to the bit 

energy broadcasted from it or received by it.  
Clausius inequality for an antenna and for informatics systems in 

general is calculated. In addition, a bound on the computing power of a 
physical device derived.  The maximum information that can broadcasted 
from an antenna was calculated, and shown to be a function of its area. 
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7. 
Economic Inequality as a Statistical Outcome 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
ncome distributive justice is a political subjective phrase related to an 
income distribution rather than to a scientific issue. Most people 
believe that income inequality should be as small as possible. 

Nevertheless, it is understood that a certain gap between the rich and the 
poor is necessary to stimulate competition between individuals. This 
competition is the invisible hand of any healthy economy. One may ask if 
there is an optimal inequality. This question is intriguing both from 
philosophical and practical points of view. Every society has a strong 
motivation to have a strong competitive economy on one hand and a 
social just on the other. These two factors are vital to the quality of life of 
the people. The governments regulate the net income distribution through 
taxation, and therefore it is of great importance to find if there is a 
theoretical criterion for an optimal wealth distribution. Moreover, history 
teaches us that a high income inequality may lead to political protests and 
even revolutions. In the words of philosopher Plutarch: "An imbalance 
between rich and poor is the oldest and most fatal ailment of all 
republics." 

The income inequality research which probably started with Pareto 
golden rule at the end of the 19th century continues to these days (Ball, 
2004). The contemporary physical approach to economy is based on 
statistical mechanics of ideal gas (Maxwell-Boltzmann), where as the 
distribution of incomeis compared to the distribution of energy-money 
among the particles-people (Dragulescu, & Petrova, 2000). However this 
approach that was applied by econophysicists (Ball, 2004) has not yield 
profound results. It was suggested previously (Kafri, 2014) that economy 
can be described more accurately as a network in which the money is a 
transient quantity exchanged between its nodes. In nature energy and 

I 
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transient energy, which is called heat, have different statistics. Energy has 
Maxwell Boltzmann statistics, and heat (i.e. photons, phonons and alike) 
obeys Planck statistics. In the network economy each node trades with the 
other nodes by transactions. Each transaction of money is represented by 
an integer number. The value of a number is the amount of money 
transferred and the sign of it is its direction. For example, if a transaction 
is +A it means that the node received A$, and if the transaction is –B its 
means that the node paid B$. In order to have an economy one need to 
add to this model a bank. The bank serves as the memory of the network 
in which all it transactions are registered. In addition of being a memory 
the bank is also aregulator. For example, the bank may decide that the 
balance of a given node, namely the sum of all itstransactions at any 
given time, cannot be negative. However, in order to have trade the bank 
should allow at least to some nodes to have a negative balance. In this 
case we say that the node receives a "credit" from the bank. When the 
bank issues the payment, it is registered as minus in the loaner-node’s 
account. But, since the loaner pays with the loan to other nodes, and they 
deposit this money back in the bank, the total balance of the bank remains 
zero. We see that the bank is not really affected by crediting the nodes. In 
fact, the bank generated money from nothing by crediting the nodes, and 
therefore we may conclude that money is not subject to a conservation 
law. 

At a first glance it seems that in this toy model there is no room for 
recessions, crisis, economic booms and alike. However, the total amount 
of money, which reflects the sum of all the transactions between the 
nodes, is not conserved, and therefore it may be changed due to 
psychological reasons like fear, optimism or even long period of 
prosperity that is expected to end.When the total amount of transactions 
reduces, there is an economic recession, and when it increases there isan 
economicgrowth. 

The network economy model enables us to calculate the distribution 
of money between people exactly as it was done with the distribution of 
links among nodes (Kafri, 2014) and the distribution of energy among 
photons. This distribution, which is called Planck Benford's distribution 
(Kafri, 2016; Kafri, & Kafri, 2013), with accordance to the intuitive 
description of the network economy above, is also independent of the 
total amount of the money of the net or in the total amount of energy of 
the radiating object. That is to say; the ratio between the various income 
ranks is only a function of the number of the ranks. This is different from 
the normal distribution of energy between particles in ideal gas which 
varies with the total amount of energy of the gas. 

The Planck-Benford distributionis basically a manipulation of Planck 
law (Planck, 1901) which describesthe equilibrium energy distribution in 
a finite number of radiation modes.The distribution of energy in the 
modes were calculated by maximizing the entropy (ME) of the radiating 
body (Kafri, 2016) namely, 
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𝜀 𝑛 = ln
1+

1
𝑛

ln 𝑁+1 
         (1)                                                                

 
Where 𝑁 is the number of the modes, which are interpreted here as the 

chosen number of income ranks (which might be deciles, percentiles, 
tenth percentiles or any other positive integer), 𝑛 is a serial number called 
here the rank number of the nodes where  𝑛 = 1,2, …𝑁. Therefore, the 
people are the nodes in rank 𝑛 and 𝜀 𝑛  is their normalized wealth. If 
𝑁 = 10 then 𝜀(3) is the relative income of the third decile.  

Eq. (1) was derived from Planck law (Planck, 1901) for photons, 
namely 𝑛 =1/(exp(𝛽𝜀(𝑛))-1); 𝑛  is the occupation number which is the 
number of photons in a mode (mode is a radiation distinguishable state), 
𝛽 is a parameter related to temperature – which is determined by the total 
energy of the system, and 𝜀 is the energy-wealth of the photons. If we 
write Planck's equation differently, namely, 

𝜀(𝑛) = 𝛽−1 ln(1 +
1

𝑛
), and considering that the normalization factor, 

 𝜀(𝑛) = 𝛽−1 ln 𝑁 + 1 ,𝑁
𝑛=1 then 𝜀(𝑛)/  𝜀(𝑛)𝑁

𝑛=1   is the relative 
wealth distribution as expressed by Eq. (1). It is seen that smaller the rank 
number richer the people in it. Therefore when a number of people are 
divided randomly in 𝑁  distinguishable groups, their wealth will decrease 
with the social rank 𝑛, according to Eq. (1). 

 

Gini Index 
Gini Index is the standard measure of income inequality for countries. 

It is a single number (ranges from 0 to 1) that is obtained from the relative 
net income distribution function 𝜀(𝑛, 𝑁). If the income of 𝑥 percent of the 
population is 𝜀 𝑥 ,  then one defines the Lagrange function as 𝐿 𝑥 =

 𝜀(𝑥 ′𝑥

0
)𝑑𝑥′.    

Namely, 𝐿(𝑥)  is the total income of all the population up to the 
fraction  𝑥. If the income is distributed equally, then  𝜀 𝑥  is constant and  
𝐿 𝑥 = 𝑥. 

Gini index is defined as 𝐺 =  [𝑥 − 𝐿 𝑥 ]
1

0
𝑑𝑥. If 𝜀 𝑥  is constant then 

𝐺 is zero. Here we use a discrete version of the Gini index. We divide the 
population to 10 deciles according to the decreasing 𝑛, namely according 
to increasing income. We designate the fraction of the net income of the 𝑛 
decile by 𝜀(𝑛)  and the discrete Gini index is defined as 

 
𝐺 =   [

𝑛

10
− 𝜀 11 − 𝑛 ]𝑖

𝑛=1
10
𝑖=1        (2) 

                                                                          
𝐿(11 − 𝑛)is the discrete Lorentz curve, namely the fraction of the net 

income of all the deciles up to the 11 − 𝑛  decile, namely, 
𝐿(𝑖) =  𝜀(11 − 𝑛)𝑖

𝑛=1  because 𝜀 is normalized 𝐿(1) = 1 .                                                                                                               
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Now we calculate the Gini index for the Planck Benford's distribution 
of wealth in 10 ranks. Each rank represents a decile of the population 
having similar income. 

In Fig. 1 we see the result of the substitution of Eq. (1) in Eq. (2) 
 

 
Figure 1. The blue bars are the accumulated income of the deciles for the case 
where each decile has the same income. The orang bars are the accumulated 

income of the deciles with the distribution of Planck Benford. The sum of the 
differences between the blue bars and the orang bars is the Gini Index. 

 
This calculation yields G=0.327. It is quiet surprising that the average 

Gini index of the 35 countries of the OECD in 2012 is almost identical to 
that obtained here theoretically for network economy in equilibrium, 
namely G=0.32. Moreover, it is counterintuitive to think that in the free 
world the highly regulated income inequality will be similar to that of 
energy inequality among photons. The reason for the surprise is the 
influence of the governments on Gini index by taxation in order to 
increase equality and decrease Gini index. Most countries in the world 
also compensate poor people by supplementary income in addition to 
taxation. Yet the Gini index is almost identical. 

 

The ratio between the incomes of the upper decile 
and the lowest decile 

From Eq. 1 we calculated table 1 that present the relative wealth of the 
deciles. The richest decile 𝑛 = 1 has 0.289 of the total wealth of the 
group, and the ratio between the highest income decile and the poorest, 
according to table 1, is 7.25. The average of the OECD for this ratio is 
9.6, which is 32% higher than that of equilibrium countries. This point 
will be discussed later. 
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Table 1. The relative income of deciles of ME society where the average of a 
decile is 0.1. The numbers calculated from Eq.(1). The left column is 𝑛 and the 
right column is 𝜀 𝑛  . 

1. 0.289 
2. 0.169 
3. 0.120 
4. 0.093 
5. 0.076 
6. 0.064 
7. 0.056 
8. 0.049 
9. 0.044 
10. 0.040 

 
The Poverty 

While Gini index and the ratio between deciles can be easily 
understood in terms of equilibrium society, poverty is harder to define. In 
the USA the poverty is defined as the inability to buy a certain amount of 
goods and services per unit time (i.e. a month). However, most countries 
define poverty as a relative quantity. In Europe a person is defined poor if 
his income is lower than 50% of the median income. The equilibrium 
network economy model cannot suggest the percentage of poor for the 
American absolute definition of poverty; however it can for the relative 
definition. 

In Table 1 we see the equilibrium distribution of the wealth among the 
people according to their deciles. The median income which is given for a 
decile between the fifth and the sixth deciles is about 7 % of the total of 
the 10th deciles. Half of this amount is 3.5%. Therefore, according to this 
definition, in country in equilibrium about 9% are poor. Indeed in the 
OECD countries the average percentage of poor is about this number. 
One should remember that the calculation of poverty as done by the 
countries' institutions  is not so simple as the calculation is done per capita 
while the income is calculated per family, therefore the number of 
children might change the numbers. Nevertheless, the equilibrium figures 
are with very good agreement with OECD economies (Murtin, & 
d’Ercole, 2015).  

 

The wealth of the rich as compared to the average 
Economists usually express the income of upper deciles, percentile 

and tenth percentile in terms of the average income. To calculate the 
average income in the ME distribution we have to find 𝑛   in which the 
sum of all the incomes below it is equal to the sum of the incomes above 
it, namely, 

 

 ln(1 +
1

𝑛
)𝑛 

𝑛=1 =  ln(1 +
1

𝑛
)𝑁

𝑛=𝑛       (3)   

                                                                                                 
Which yields that; 2 ln(𝑛 + 1) = ln(𝑁 + 1) or  
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𝑛 =  𝑁 + 1 − 1           (4)                                            
 
Using Eq. (4) we can calculate the ratio 𝑅 of the income of the richest 

and the average income.  
 

𝑅𝑁 = ln 2/ ln(1 + 1/ 𝑛 )       (5)                                                                                                                     
 
It worth noting that 𝑅 is a function of 𝑁. The higher is  𝑁 , the higher 

the gap between the rich and the average. From Eqs. 5 and 4 we 
calculated table 2 which is the ratio between the upper fractions to the 
average. The left column is 𝑁 and the right is 𝑅. 
 
Table 2. The ratio between the upper fractions to the average.The left column is 𝑁 
and the right is the wealth of richest fraction as compared to the average. As 𝑁 
increases the ratio increases.  

2 10 
7 100 
22 1000 
69 10000 
219 100000 
693 1000000 

 
From Eq. (5) we can calculate the equilibrium net income of the 

richest. For example, if the average yearly income of a person is 30K$, 
we see from table 2 that for deciles in which   𝑁 = 10, the ratio between 
the upper decile and the average is 2, therefore the upper decile will make 
60K$. Similarly, the upper percentile will make 7 × 30 = 210K$ and the 
upper tenth percentile annual income is 22 × 30 = 660 K$. 

 

CEO compensation 
Eqs. (4) and (5) enable us to calculate the compensation of the CEO in 

terms of the average salary in his company and as a function of the 
number of employees 𝑁 of the company. For example, Walmart has 2.2 
million employees. In terms of an equilibrium company, its CEO should 
earn 1034 average salaries. Indeed, in reality Walmart's CEO makes a 
very similar number, namely 1028 average salaries (Link). In 23 
companies of Fortune 100 the CEO compensation follows closely this 
formula. To mention few: Walmart, Macdonald's, Apple, Morgan Stanley, 
etc. Only 5 companies pay more than 2 times the equilibrium value, and 
in 5 companies the CEO makes less than 0.1 of this value. For example: 
W. Buffett salary is 0 in this scale. The average of the Fortune 100 
companies is 0.87 as compared to 1 if all the companies would pay 
according to Planck Benford'slaw. Namely, on the average, for various 
reasons, there is a small tendency to pay a little less than the equilibrium 
salary for CEO's, the reasons probably are similar in their nature to that 
causing Mr. Buffett basically not to draw salary. 

 
 

http://fortune.com/2015/06/13/fortune-500-most-employees/;http:/www.payscale.com/data-packages/ceo-income-2013/fortune-100


 

O. Kafri, (2017). Entropy, Selected Articles…                                                                 KSP Books 

72 

Pareto Law 
Economists also calculate the distribution of wealth in term of the 

relative part of the total wealth held by the richest. The calculations in 
equilibrium society are done here for percentile using the equation 
𝑃 = ln 2/ ln 101  for the first percentile, for the first ten percentiles 
𝑃 = ln 11/ ln 101, and for the first 20%,  𝑃 = ln 21/ ln 101,  of the wealth. 
This formula yields that the upper percentile has 15% of the total wealth, 
the upper decile has 52%, and the upper fifth has 66% of the wealth. In 
the OECD countries the average of the upper percentile has 18% of the 
wealth and the upper decile has 50% of the wealth (Murtin, & d’Ercole, 
2015). 20% of the population in ME society has only about 66% of the 
wealth, a bit more justice for the poor than in the famous 80:20 Pareto 
law. According to this formalism 60% of the poorer population have 
19.5% of the total wealth as compared to 13% in OECD.  

 

Discussion 
It is surprising that this oversimplified toy model yields such sound 

results. Yet, we have to point outthe limitations of this model. In this 
model there is only one bank and one country. In reality there are several 
banks and several countries trading between themselves. Moreover, the 
central bank takes no interest or any other fee for the loans. Yet it seems 
as if the single country inequality values are not affected by international 
trade or by the plurality of the banks or the charges of the bank. The 
second limitation is the differences between photons' energy and human 
wealth. With analogy to blackbody radiation in which all the photons in a 
given radiation modes have the same energy, the basic assumption of this 
model is that all the people in the same income rank earn exactly the same 
amount of money. The higher the ranknumber, the poorer the people (for 
large 𝑛  the wealth 𝜀  is proportional to 1/𝑛  which is Zipf's law (Zipf, 
1949; Gabarix, 1999). Therefore, when we divide the population to 
percentiles instead of deciles, we add more wealth scales of poor people 
that were not previously counted. For photons, the size of the blackbody 
determines the photons’ minimum energy; similarly for people, the 
minimum money required to keep one alive determines the minimum 
wealth. This amount is lower than that of the formal definition of poverty 
in the OECD. This explains the differences of the ratio between the upper 
decile to the tenth decile, 9.6 in the OECD as compared to 7.25 of the 
present model, as some of the people that are poorer than the 10 th decile of 
the model appears in the OECD statistics but not here. On the other hand, 
if we divide the people’s wealth to percentiles instead of deciles, we count 
many poor people that are below the poverty that exists in the OECD. 
This limitation of “empty” percentiles of high rank number does not exist 
when calculating the CEO’s compensation of companies in which the 
rank's number is low. The reason for it is that here we calculated the top 
salary in comparisonto the average salary which is substantially higher 
that the median salary. Generally, in the zone that 𝑛 ≪ 𝑁  the ratios of 
wealth will behave according to this model. 
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The same statistics was previously shown (Kafri, 2016) to be effective 
for voting. The distribution of the parliament seats among the 10 parties 
in Israel in the elections of 2015 is similar to that obtained by Eq.(1). In 
fact, the Gini index of inequality of seats among parties in the Israeli 
parliament, when is calculated according to Eq. (2) is 0.324. If so, one 
may ask whetherwe behave as a microcanonical ensemble after all. If we 
accept the assumption that the only physical law that causes irreversible 
changes in the universe is the second law, than the answer is that in 
equilibrium, maximum entropy distribution will be reached, and its 
probability should apply to economy which is a part of nature. As 
physicist Josiah Gibbs said (Kafri, & Kafri, 2013): "the whole is simpler 
than the sum of its parts". 

 

Summary 
In this note we calculate the thermodynamic equilibrium distribution 

of the wealth among people according to their income rank. We use a toy 
model economy of people randomly exchanging money between them 
selves. We make an analogy between this network economy and Planck's 
statistics in which the people/nodes are the photons, their energy is their 
wealth, and the social ranks are the radiation modes. We calculate for this 
distribution the indexes used by economists to describe the relative 
inequalities of income in countries and in companies. Namely, Gini 
Index, the ratio between highest income decile and the lowest income 
decile, relative poverty and the relative income compared to the average 
of the upper percentile and tenth percentile and the wealth held by the 
richest. We applied this formulation to calculate the executive 
compensation as a function of the number of employees and the average 
salary paid by the companies. The results fit well the inequities of wealth 
both in the OECD countries and in the Fortune 100 companies.  
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8. 
A Comment on Nonextensive Statistical 
Mechanics 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

An Introduction to 
here are two typical distributions observed in the macroscopic 
world. The first one is the bell-like function, which is a result of 
the canonic distribution, and the second one is the long tail, which 

is a result of a power law distribution. While some statistical quantities 
are bell-like (the human height etc.), many others, like the human wealth 
etc. have a long tail distribution. The long tail distribution is as common 
in nature as the bell-like distribution. 

Apparently, many believe that the long tail distribution cannot be 
obtained from equilibrium thermodynamics. The reason for this 
misconception is the way the canonic distribution is derived in some 
textbooks (Back, 2009), namely to define a function as followed: 
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pf  yields the canonic distribution. Here p is 

the probability, E is the energy, α  and β  are Lagrange multipliers and W 
is the number of microstates. 

Eq. (1) looks exact, as the first term on the RHS represents the (-) 
Gibbs entropy, the second term is equivalent to the total number of 
particles, and the third term is the total amount of energy of the system. 
At a first glance, no approximations are made, and therefore, the only 
possible solution that maximizes the entropy for a given number of 
particles and a given amount of energy is the canonic distribution (Back, 

T 
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2009). This implies that there is no way to obtain a power law distribution 
by maximizing Boltzmann-Gibbs entropy. 

This is probably the reason for the enormous effort made to 
"generalize" the second law. The idea was to change the concept of 
entropy in a way that Eq. (1) will yield a power law distribution. This is 
the justification for Tsallis entropy (Tsallis, 1988), Renyi entropy (Lenzi, 
2000), and more… The "entropy" of the highest impact is Tsallis entropy, 
which received, since it was suggested in 1988, according to Google 
scholar, more than 1250 citations. This warm welcome by the 
"community" is surprising as Tsallis entropy is nonextensive, which 
means a system in disequilibrium. The physical explanation for the 
nonextensivity is long-range interactions, which also implies 
disequilibrium. 

Therefore, accepting nonextensive entropy means giving up the most 
important concept of thermodynamics, namely the tendency of any 
system to reach equilibrium. In other words, nonextensivity means giving 
up the second law of thermodynamics altogether!  

Hereafter, it is shown that the assumption that canonic distribution is 
the only solution that maximizes Boltzmann-Gibbs entropy under the 
constraints of Eq. (1) is erroneous.  

Eq. (1) should be written, 
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Namely, Gibbs entropy should be summed over all possible different 

configurations W of the ensemble (the microstates).  However, the 

summation over the energies ii Ep  should be done over the states N, as 

the distribution that we are looking for is the distribution of energy among 
states and not microstates (all the microstates have equal energy!). 

Usually, W  and N are different numbers. An ensemble of N states and P 

particles where NP  , and no more than one particle is allowed in a 
state, has a number of configurations,  
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Applying Stirling formula and using Boltzmann entropy WS ln , 
we obtain that  

        

)}1ln()1(ln{ ppppNS  , where 
N
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Or in Gibbs formalism, 
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In the approximation 1p , )1ln()1( pp  vanishes and the 

expression 
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In this case Eq. (2) becomes, 
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and yields the canonic distribution. 
The conclusion up to this point is that the canonic distribution is not a 

law of nature, and it exists only at low occupation number systems. 
Since, Eq. (1) is not always true, the legitimate way to look for other 

distributions is to calculate the number of microstates and their 
probabilities rather than changing the expression of the entropy. 

Hereafter, it is shown that in fact, a power law distribution and its 
appropriate statistics exist in physics for over a century. 

In the general case (neglecting degeneracy), we have to count all the 
configurations of P particles in N states for any value of n (here we 

replace the symbol p by n as we allow 1
N

P
). We follow the footsteps 

of Planck's seminal work from Planck (1901), namely, 
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We apply again the Stirling formula as was done by Planck and obtain 

that }ln)1ln()1{( nnnnNS  , or in Gibbs formalism,  
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(Some may recall that this is Planck's derivation). If 1n , we 

obtain again that the entropy is 
i

N

i

i pp ln
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


 , and therefore the canonic 

energy distribution is obtained as a private case. Since n is now 
interpreted as a number and not a probability we omit the second term in 
Eq.  (2). By substituting the entropy of Eq. (6)  in Eq. (2) 
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we obtain the Planck equation namely, 
 

1

1




iEi
e

n


       (8) 

 
Similarly, substituting the entropy calculated from the number of 

microstates of Eq. (3) in Eq. (7) yields the Fermi-Dirac distribution. 

We designate ii E  and we plot inln  versus iln  and we see 

that when 1n , Planck equation yields a power law distribution with a 
slope –1.  

 

 
Figure1. A log-log plot of the occupation number versus the relative energy. 

 
In Fig.1 it is seen that when the number of particles is higher than the 

number of states (high occupation numbers), a power low distribution is 
obtained, and at low occupation numbers the canonic distribution is 
obtained. In the classic Rayleigh-Jeans approximation the distribution of 
photons in a radiation mode is a long-tail distribution. In fact, the same 
statistics was used recently to derive Benford's law and the wealth 
distribution (Kafri, & Kafri, 2013; Kafri, 2009, 2016).   
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9. 
Sociological Inequality and the Second Law 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An Introduction to 
t seems that nature dislike equality. In many cases distributions are 
uneven, a few have a lot and many have to be satisfied with little. This 
phenomenon was observed in many sociological systems and has 

many names. In economy it is called Pareto law (Bak, 1996; Newman, 
2006), in Sociology it is called Zipf law (Troll, & Graben, 1998; Gunther, 
1996) and in statistics it is called Benford law (Benford, 1938; Hill, 
1996). These distributions differ from the canonic (exponential) 
distribution by a relatively moderate decay (a power-law decay) of the 
probabilities of the extremes that enables a finite chance to become very 
rich. Here it is shown that the power law distributions are a result of 
standard probabilistic arguments that are needed to solve the statistical 
problem of how to distribute P particles in N boxes.  Intuitively one tends 
to conclude that P particle will be distributed evenly among N boxes, 

since the chance of any particle to be in any box is equal, namely, 
N

1
. 

However, this is an incorrect conclusion, because the odds that each box 
will score the same amount of particle are very small. Usually there are 
some lucky boxes and many more unlucky ones. The distribution function 
of particles in boxes should maximize the entropy. This is because in 
nature, fairness does not mean an equal number of particles to all boxes 
N, but an equal probability to all the microstates (configurations)  . The 
equal probability of all the microstates is the second law of 
thermodynamics, which, exactly for this reason, causes heat to flow from 
a hot place to a cold place.  

I 
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Calculating the distribution of P particles in N boxes with an equal 
chance to any configuration is not simple, as the number of the 
configurations ),( NP  is a function of both P and N namely,  
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The derivation of the distribution function to Eq.(1) is not new. Planck 

published it in 1901 in his famous paper in which he deduced that the 
energy in the radiation mode is quantized (Planck, 1901; Kafri, & Kafri, 
2013). Here the Planck's calculation is followed with the modifications 
needed to fit our, somewhat simpler, problem. Planck first expressed the 

entropy, namely  lnBkS  ( Bk is the Boltzmann constant), as a 

function of the number of modes N and the number of light quanta P  in 

a mode 
N

P
n  . Using Stirling formula, he obtained that 

}ln)1ln()1{( nnnnNkS B  . Then he used the Clausius 

inequality in equilibrium (Kestin, 1976) to calculate the temperature T, 

from the expression, 
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radiation modes and q is the energy of a single radiation mode. Therefore, 

the temperature is 
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ln( , this is the famous Planck equation, 

namely, the number of quanta in a radiation mode is, 
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. The 

calculation of Planck is comprised of three steps. First he expressed the 
entropy S by the average number of quanta n in a box and the number of 
boxes (radiation modes) N. Next, he used the Clausius equality to 
calculate the temperature. The equality sign in Clausius inequality 
expresses the assumption of equilibrium in which all the configurations 
have the same probability. Then Planck added a new law that was verified 
by the data of the blackbody radiation that the energy of the quant is 
proportional to the frequency. This law is responsible for the observation 
that in the higher frequencies n is lower. 

In our problem we do not have energies or frequencies. We just have 
particles and boxes. Therefore, we will write the dimensionless entropy, 
namely the Shannon information as a function of n  and N, and obtain 
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that }ln)1ln()1{( nnnnNI  . Parallel to Planck, we calculate 

the dimensionless temperature   according to 
I
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
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Here we replace the total energy Q by P and q by )(nn , where )(n is 

a distribution function that tells us the number of boxes having n particles. 

)(n  is the analogue of Planck’s h . Changing the frequency enabled 

Planck to change the number of the particles in a mode at a constant 
temperature. Here we change the probability of a box with n particles at a 

constant temperature. The sociologic temperature 
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equal, in equilibrium, in all the boxes. Since, 








 )(
)

1
ln(

nN

n

n
N

n

I   

one obtains that 
n

n
n

1
ln)(


 .  

This is the analogue of the Planck's equation, namely 
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When P is large as in many statistical systems, we are interested in the 

normalized distribution.  Since 
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normalized distribution function is,  
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This is the main result of this paper. This result can be applied to any 

natural random distribution of inert particles in N boxes1.  
To check the validity of this distribution we start with Benford's law. 

Benford's law was found experimentally by Newcomb in the 19 th century, 

 
1 The Plank derivation can be obtained using a more standard way namely, the Lagrange multipliers. 

In this method we write a function, ))((ln)(  nnPnf  . The first term is the Shannon 

information and the second term is the conservation of particles. We substitute 
0
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nf  to find that,
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 . This is the maximum information solution that yields after normalization the 

Eq. (2) see Kafri (2009).  

 1 2 3 4 5 6 7 8 1 Average 2 Theoretical 
A 55% 39% 47% 64% 46% 56% 65% 47% 52% 50% 
B 32% 38% 31% 20% 37% 30% 19% 33% 30% 29% 
C 13% 23% 22% 17% 17% 15% 16% 19% 18% 21% 
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was extended later by Benford (1938) and explained on a statistical basis 
by Hill (1986, 1996). It says that in numerical data files, which were not 
generated by a randomizer, namely balance sheets, logarithmic tables, the 
stocks value etc, the distribution of the digits follows the equation 

)
1

1log()(
n

n  .  For example, the frequency of the digit 1 is about 6.5 

times higher than that of the digit 9.  It is seen that if one substitute in 
Eq.(2) N=9 the Benford law is obtained. One can assume that the digit 1 
is a box with n=1 particle and n=9 is a box with 9 particles. In fact, it is 

obvious that the equation valid for 1Cn , for the digit 1 and 

9Cn  for the digit 9, where C is any number bigger than one. 
Another way, intriguing even more, to check the informatics Planck 

distribution of Eq. (2) is to compare its results to polls statistics. In polls 
there are usually N choices and P voters that suppose to select their 
preferred choice. Usually each voter can select only one choice. A poll is 
not necessarily a statistical system. An example for a non-statistical poll 
is a poll with the three questions: 1. Do you prefer to be poor? 2. Do you 
prefer to be young, healthy and rich? 3. Do you prefer to be old and sick? 
In this poll one expects that most people will vote 2 (at least for 
themselves). However, it is clear that nobody will make the effort to make 
this poll, as its result is predictable. However, in the Internet there are 
many examples of multi- choice votes with unpredictable answers. Here 
we study three choices polls that were done on the Internet by the Globes 
Newspaper (2008) (an Israeli economical daily news) on variety of 
subjects between 10 Feb. 2008 and 10 Apr. 2008, for eight consecutive 
weeks on various issues. The results are presented in Fig 1. 
 

 
Figure 1. The average distribution of votes of consecutive eight polls: Each poll 

has three choices selected by about 1500 voters. The blue line is the actual 
distribution. The red one is the theoretical calculation based on maximizing the 

Shannon information. 
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It is seen that although the individual votes for the preferred choices 
A, B and C are quite different from the theoretical values, namely, 50%, 
29% and 21% respectively. The average is with a good agreement with 
the experimental results. It is plausible that on the average, the polls 
reflect more uncertainty about the best choice than in an individual poll. 
Therefore, one expects that the average of the eight polls will be closer to 
equilibrium. 

If we consider the number of particles in a box as an indicator of 
wealth, one may use Eq. (2) to calculate the theoretical particles wealth of 
boxes in equilibrium. For example, in a set of a million boxes the richest 

box will have a relative density of 05.0
1000001ln

2ln
 . Namely, 5% of the 

particles will be in one box.  Similarly, the richest 10% will have 

29.0
11ln

2ln
 . That means that 10% of the boxes will posses 29% of the 

particles. The richest half of the boxes will have about 63% of the wealth. 

The poorest 10% of the boxes will posses 044.0
11ln

)
9

1
1ln(




of the particles, 

namely less than the richest single box. From the point of view of the 
boxes this is an unfair distribution. Nevertheless, from the point of view 
of the microstates (which are the configurations of boxes and particles) 
this is the just way to distribute the wealth.  

It was shown previously that Planck formula yields a power law with 
slop 1 (Kafri, 2007). There are many publications that find power-law 
distributions with variety of slopes (Newman 2006). If we assume that the 

probability of the particles in a box is )(n , we can generalize this 

theory to a slop  power-law.     
To conclude: the uneven distributions that are so common in life are 

partially an outcome of an unbiased distribution of configurations. This is 
the second law of thermodynamics as manifested by Boltzmann and 
Planck. Namely, the probability of all the microstates is equal. Not all the 
systems are in equilibrium, but systems in equilibrium are more stable. 
Thermal equilibrium is reached by the dynamics of the system. In 
blackbody, photons are emitted and absorbed constantly by the hot object, 
therefore one can expect to a thermal distribution. In economy the money 
exchanges hands all the time. The digits in numerical data are also 
changed by the number crunching operations. Nevertheless, the situation 
in polls is different. Voting in the Internet is a spontaneous non-
interactive social activity; therefore, it is surprising that the solitary 
autonomic action of an individual yields a result of a statistical ensemble. 
A possible explanation is that our decision process mimics the behavior of 
a group, after all a human is a coalition of cells. 
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10. 
The Distributions in Nature and Entropy 
Principle 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
ccording There are two common distributions in life: The first one 
is the "bell-like" distribution, which is found in the distribution of 
IQ, human heights, human age at death etc. This "almost 

universal" distribution was introduced for the first time by Moivre in the 
18th century and explored by Laplace and Gauss around 1800. 

As opposed to the bell curve distribution, many quantities are 
distributed unevenly (Bak, 1996). For example, the probability to live in a 
big city is higher than the probability to live in a small village. Similarly, 
the probability to be poor is higher than the probability to be rich. 
Although intuitively it is logical for cities' population and wealth to have 
a bell curve distribution, it is not so. Their distributions are uneven and 
are characterized by a long tail to the right, in which few have a lot and 
many have quite a little. These distributions were observed by Pareto, 
Zipf, Newcomb and Benford about a century later and received their 
name accordingly: Zipf law (Zipf, 1949; Miller, & Newman, 1958), 
Pareto's rule (Pareto 1897; Jurgan, 1951), and Benford's law (Newcombs, 
1881; Benford, 1938). 

The first to discover it was Pareto. In 1896 he observed that the 
ownership of lands in Italy is distributed among the population in the ratio 
of around 20:80, namely, about 20% of the population own about 80% of 
the land. From his observations of other countries as well, he concluded 
that this ratio is general. Mussolini embraced the Italian Marquis Pareto 
because he believed that the Pareto's rule proves nature's preference of the 
fittest. Zipf - a Harvard professor of linguistics - found out that the ratio 
between the first most frequent word and the second one, in any text in 
many languages, is two. Similarly, the ratio between the second most 

A 
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frequent word and the fourth one is also two, etc. He claimed that the 
shortest and most "efficient" words appear more frequently (Zipf, 1949). 

Zipf believed in the evolutionary philosophy, i.e. the most "useful" 
and "efficient" words are the winners, in the spirit of "the survival of the 
fittest". On the other hand, many people and political movements believe 
that Pareto's rule is unfair and the wealth should be shared more equally, 
namely, as in the bell curve distribution. The discovery of Newcomb 
about the uneven frequency of digits in logarithmic table in 1881 
(Newcomb, 1881), (the higher the value of a digit, the lower its 
frequency) raises some doubts as for the real reason for the uneven 
distributions. Later, in 1938, Benford confirmed Newcomb's uneven 
distribution of digits in a wide range of numerical data (Benford, 1938). 
He attempted, unsuccessfully, to present a formal proof to Newcomb's 
equation, see Eq. (12). Since then, this distribution was found also in 
prime numbers (Cohen, 1984), physical constants, Fibonacci numbers and 
many more (Kossovsky, 2012). 

In this paper it is argued that the "bell-like" distribution and the long 
tail distribution are the boundaries of the same probability distribution. 
This probability function is obtained by a fair and unbiased random 
distribution of particles in boxes. 

We consider a set of N boxes scoring P particles; it is assumed that all 
the boxes have an equal probability to score a particle, namely, the 
probability of a box to score a particle is = 1/𝑁  . Therefore, the 

probability to score n particles is 𝑞𝑛 = (
1

𝑁
)𝑛 . It is clear that 𝑞𝑛 < 𝑞. This 

is the basic reason why the rich are fewer than the poor. In the case of  
𝑃 ≪ 𝑁,  where a multiple score is negligible, the “bell-like” distribution 
is obtained; and in the case of 𝑃 ≫ 𝑁, a long tail distribution is obtained. 

 

How P particles are distributed in N boxes? 
The answer to it is not new: the particles are distributed in a way that 

maximizes the entropy (Planck, 1901). 
According to Boltzmann, entropy is proportional to the maximum 

possible number of the different configurations (microstates) of a set. 
Namely, 

 
𝑆 = lnΩ        (1) 

 
(we take here the Boltzmann constant kB≡ 1). A microstate is one 

possible distinguishable configuration of a set of boxes and particles. 
Boltzmann entropy is obtained from the Gibbs-Shannon entropy by 
assuming that all the microstates have an equal probability. The Gibbs-
Shannon entropy is given by: 

 
𝑆 = − 𝑝𝑗

Ω
𝑗 =1 ln 𝑝𝑗        (2) 
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where𝑝𝑗  is the probability of the microstate 𝑗 and Ω is the number of 
microstates to be maximized. If all the microstates have an equal 
probability, namely,𝑝𝑗 = 1/Ω , Boltzmann entropy  lnΩ  is obtained. 

Therefore, the distribution of particles that maximizes Boltzmann 
entropy means an equal probability to any configuration as well as an 
equal probability to any particle to be in any box. 

The number of microstates (different configurations) of 𝑃 particles in 
𝑁 states is given by the Planck expression (Planck, 1901) namely, 

 

Ω 𝑃, 𝑁 =
 𝑁+𝑃−1 !

𝑝! 𝑁−1 !
          (3) 

 
To visualize the problem we start with a numerical example; namely, 

calculating the distribution of 3 particles in 3 boxes that maximizes 
entropy. According to Eq. (3) the number of microstates Ω 3,3 = 10 as 
follows: 

 
|300| 030| 003| 210| 201| 120| 021| 102| 012| and |111|. 
 
We see that although each box has an equal chance to score 1, 2, or 3 

particles, the boxes with 1 particle appear 9 times, those with 2 particles 
appear 6 times, and those with 3 particles appear 3 times. The relative 
frequency of the boxes with one particle in a set of three boxes is 
therefore f(1)=0.5; with two particles f(2)=0.333and with three particles 
f(3)=0.166. 

To calculate the relative frequencies f(n), we designate 𝑛 = 𝑃/𝑁 , 
where 𝑛  is the number of particles in a box, and apply the Stirling's 
formula  

lnN! ≅N ln N−N . We obtain (Planck, 1901) from Eqs.(1) and (3) 
that, 

 
𝑆 ≅ 𝑁{ 1 + 𝑛 ln 1 + 𝑛 − 𝑛 ln 𝑛} ≅  {(1 + 𝑛) ln 1 + 𝑛 − 𝑛 ln 𝑛}𝑁

𝑛=1  
        (4) 

 
Now we write the Lagrange equation, 
 

𝐹 𝑛 ≅  {(1 + 𝑛) ln 1 + 𝑛 − 𝑛 ln 𝑛}𝑁
𝑛=1 − 𝛽{𝑃 −  𝑛𝜙(𝑛)}𝑁

𝑛=1
        (5) 

 
The first term on the RHS is the entropy and the second term is 

theconstraint of the number of particles. Namely, 𝑃 =  𝑛𝜙(𝑛)𝑁
𝑛=1  is the 

number of particles, 𝜙 (n) is the number of boxes that scored n particles 
and β is a 

Lagrange multiplier.𝜙 (n) can be interpreted as the probability of a 
box to have 𝑛  particles. The normalized (𝑛)  , 𝑓(𝑛)  is the relative 
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frequency of the boxes that scored 𝑛  particles. From 
𝜕(𝐹(𝑛)

𝜕𝑛
= 0  one 

obtains, 
 

𝜙 𝑛 = 𝛽−1 ln(1 +
1

𝑛
)      (6) 

 
Eq. (6) is the analogue of Planck equation (Kafri, 2007, 2009, 2016), 

namely, 
 

𝑛 𝑛 = 1/[𝑒𝛽𝜙 𝑛 − 1]      (7) 
 
Hereafter, we examine three cases: 
In the first case we assume that n>> 1. Here one can expect to find a 

large number of particles (limited by P) in any of the boxes. For example, 
if we conduct a popularity poll between the N words among P authors, 
and there are many more authors than words, then the maximum entropy 
distribution of the votes between the words is shown to be the Zipf law. 

In the second case we consider the intermediate zone where n is in the 
range of the number of the boxes. This case fits well to the distribution of 
ranks, namely, Pareto's rule and Benford's law. 

In the third case we consider n<< 1, where the number of particles is 
negligible as compared to the number of boxes. This case fits well to the 
probability of guessing correctly the IQ of a person in a single guess 
based only on the knowledge of the average. This case yields the "bell-
like" distribution. 

 

Zipf law 
Consider the case where 𝑃 ≫ 𝑁 where ≫ 1. In this case  𝛽𝜙 ≪ 1, 

therefore from Eq. (7) 𝜙(𝑛)  can be approximated to, 
 

𝑛𝜙(𝑛) =
1

𝛽
                (8) 

 
Eq.(8) is the Zipf law. Namely, the ratio in the frequencies between 

n=1 (the most frequent word) and n=2 (the second most frequently word) 
is 2 which is identical to the ratio between 𝑛 = 2 and 𝑛 = 4 etc. This ratio 

is not a function of  𝛽 as   
𝜙 1 

𝜙 2 
=

𝜙 2 

𝜙 4 
= ⋯

𝜙 𝑛 

𝜙 2𝑛 
= ≅ 2. 

 
 

Pareto's rule 
to calculate the relative frequency of Eq.(6), namely, f(n) we have to 

divide 𝜙(𝑛)  by the sum over all the M occupied boxes M≤N , namely, 
 

 𝜙 𝑛 =
1

𝛽
(ln

2

1
+ ln

3

2
+ ⋯ . . + ln

𝑀+1

𝑀
)𝑀

𝑖=1 =
1

𝛽
ln

𝑀+1

𝑀
   (9) 
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Therefore, 
 

𝑓 𝑛 =
ln (1+

1

𝑛
)

ln (𝑀+1)
                    (10) 

 
Like in the Zipf law, for integer n's, the relative frequency is not a 

function of 𝛽 .We define a rank 𝑟 ≡ 𝑛𝑁/𝑃where  𝑟 = 1, 2, 3, … . 𝑅. By 
defining the ranks we combined the boxes into clusters of boxes such that 
each cluster will contain 𝑟 = 1, 2, 3, … . 𝑅  groups of  𝑃/𝑁  particles. 
Therefore 𝑟 = 10 means 10 times more particles than r= 1. We can repeat 
the calculation of the frequency again but instead of using n, we will use 
r, and obtain; 

 

𝑓 𝑟 =
ln (1+

1

𝑟
)

ln (𝑅+1)
                     (11) 

In Graph.1 The relative frequencies𝑓(𝑟) for a set of R=106 clusters 
and r= 1,2,3,...., Raccording to Eq.(11) is plotted. A long tail distribution 
is demonstrated. 

 

 
Graph 1. A million clusters and their probabilities. The rank increases as its 

probability decreases. 
 
Eq.(11) "behaves" as a power law, this is so because a plot of the 

logarithm of the cluster r versus the logarithm of its probability yields a 
straight line as demonstrated for a million ranks. 
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Graph 3. Log-Log plot of frequency versus the rank for R=million is a straight 

line. 
 
The Pareto's 20:80 rule of thumb was proved to be correct not only in 

wealth distribution but in many other phenomena as well. For example, it 
is believed that 20 percent of customers yields 80 percent of the revenue; 
20 percent of the drivers cause 80 percent of the accidents; etc (Jurgan, 
1951). In order to find the ratio obtained from Eq. (11) we divide the 
boxes into 10 ranks. Each rank contains 1, 2, 3,….,9, 10 equal groups of 

particles. We construct the table below from 𝑓 𝑟 =
ln (1+

1

𝑟
)

ln (11)
 

 
Table 1. The relative frequencies of 10 ranks 

r 10 9 8 7 6 5 4 3 2 1 
f(r)% 4 4.4 4.9 5.6 6.6 7.6 9.3 12 16.9 28.9 

 
The total number of groups is 𝑟 = 5510

𝑟=1 .  However, the richest five 
ranks contain  𝑟 = 4010

𝑟=6  groups. Their total frequencies are 
 𝑓 𝑟 = 25.5%10

𝑟=6 , which means that about 73% of the packages are in 
the hands of about 25% of the boxes. This is a typical behavior of the 
Pareto's rule but with a small deviation from the empirical rule of thumb 
of 20:80, namely, a 25:75 rule. 

 

Benford's Law 
Another application of Eq. (11) is Benford's law. Newcomb suggested 

Benford's law in 1881 from observations of the physical tear and wear of 
books containing logarithmic tables (Newcomb, 1881). Benford further 
explored the phenomenon in 1938, and empirically checked it for a wide 
range of numerical data. The main application of Benford's distribution is 
based on its existence in numerous random numerical files like financial 
data, street addresses, etc. Since one intuitively expects to obtain an even 
distribution of digits, as would be in the case of an unbiased lottery, some 
income tax authorities are looking at balance sheets for digit distributions 
in order to detect fraud detection. If the balance sheets don't fit to 
Benford's law, a further inspection is done (Nigrini, 1996). 
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In the derivation of Benford's law we assume that a digit is a box with 
n particles. This assumption is logical as a digit, unlike a word, has an 
absolute meaning as compared to other digits, exactly as the meaning of 
the number of particles in a box. There is a constraint though: the number 
of particles in a digit cannot exceed 9. The digit zero does not appear in 
Benford's law distribution of the first order. In Eq. (11) r may have any 
number. In digits, per definition, r≤9, therefore, it is legitimate to 
calculate the equilibrium distribution of the occupied boxes and to add as 
many empty boxes without affecting the distribution. In this case R is 9 
and Eq. (11) yields the relative frequency, 

 

𝑓 𝑟 =
ln 1+

1

𝑟
 

ln 10 
= log(1 +

1

𝑟
)                      (12) 

 
This is the Benford's law. 

 
Graph 3. Benford's law predicts a decreasing frequency of first digits, from 

1through 9. 
 

"Bell-like" distribution 
Zipf law, Pareto's rule and Benford's lawoccurs where the number of 

particles is larger than the number of boxes. Hereafter, the case where 
P<<N is considered. 

In this case n<< 1, we neglect the boxes that scored several particles, 
because, practically there are no such boxes. We want to find the 
probability distribution of N boxes to score one particle. In this limit, 
𝑒𝛽𝜙  ≫ 1 and Eq. (7) can be approximated to, 

 
𝑛𝑖 = 𝑒−𝛽𝜙𝑖                   (13) 

 
Here ni is the fraction of a particle in a box and the frequency 𝜙i=𝜙 (ni 

) is the probability to find this fraction. The total number of particles P is 
given by the same expression that we used in the Lagrange equation (5) 
namely, 

 
𝑃 = 𝑁𝜙i𝑛𝑖 = 𝑁𝜙𝑖𝑒

−𝛽𝜙𝑖                  (14) 
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in the limit β→ 0 one obtains that all the frequencies 𝜙𝑖  of the boxes 
are equal, namely 𝜙𝑖 =𝑃/𝑁 . This is an even distribution. The even 
distribution isthe intuitive distribution that one expects to find in a 
distribution of particles in boxes. This distribution causes us to believe 
that uneven distributions are counterintuitive. 

In the case where β is finite 
 

𝑃 =  𝜙𝑖𝑒
−𝛽𝜙𝑖 =  𝑃(𝑁

𝑖=1
𝑁
𝑖=1 𝜙𝑖 , 𝛽)               (15) 

 
𝑃 𝜙𝑖 ,𝛽 

𝑃
is the relative probability to find a particle in a box. From Eq. 

(15) it is seen that 𝑃(𝜙𝑖 , 𝛽) has two components, the first is the frequency 
𝜙𝑖  of the fraction 𝑛𝑗 of the particle and the second is the fraction of 
particles. As opposed to the case where P>>N, the frequency  𝜙(𝑛) itself 
is not the probability to find n particles but the probability to find a 
fraction of a particle. To find the probability of a single particle we have 
to multiply the frequency by the fraction of the particle namely 𝜙𝑖𝑛𝑖  . 
When the frequency increases the associate fraction of particles decreases 
exponentially with the frequency. The larger the β , the steeper is the 
decay. Since P(𝜙, β ) is a linearly increasing function of 𝜙𝑖  multiplied by 
an exponentially decay function of 𝜙𝑖  , the distribution of particles in a 
box has a definite maximum. 

 

 
Graph 4. The number of boxes and their probability to find a single particle for 

N=1000 and 𝛽= 1/50 
 

The maximum probability is obtained from
𝜕𝑃

𝜕𝜙
= 𝑒−𝛽𝜙 − 𝛽𝜙𝑒−𝛽𝜙 = 0 

and is given by𝜙𝑚𝑎𝑥 = 1/𝛽 . In Graph (4) we see that the obtained curves 
is typical to the distributions of velocity of molecules, human age at death 
etc. 
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Discussion 
The long tail distribution attracts a considerable attention because it is 

so ubiquitous [15]. Sometimes it is called a power law distribution and 
scale-free distribution. This is because a Log-Log presentation of the 
distribution yields a straight line as seen in Fig.2. When a power law fits 
are done, different slopes obtained for different statistics. For example, in 
Zipf law the ratio between the frequency of the 1st and the frequency of 
the 2nd is 2; in Pareto's rule and in Benford's law this ratio is about 1.7. 
Namely, in different regimes of P / N different "slopes" are obtained as is 
seen in Graph 5. Another notable point is that the normalized frequencies 
f (n)𝑓(𝑛) for𝑃 ≫ 𝑁 are not a function of β .This is with contradistinction 
to the case P<<N in which the distribution is a function of β. 

 

 
Graph 5. A plot of ln𝜙versus ln𝑛: for high values of n a “power law” decay is 
obtained, however for low values of n an exponential decay is obtained. 

 
The Lagrange multiplier 𝛽  has a meaning. In ther modynamic the 

temperature is related to it via 𝑇 ∝
1

𝛽
.We see that in the case of Zipf law 

the frequency multiplied by the number of particles is proportional to the 
temperature. In the case of 𝑛 ≪ 1 the temperature is proportional to the 
frequency in which the probability to find a particle is the highest. This is 
the main difference between the long tail distribution and the "bell-like" 
distribution. In the long tail the temperature means the average wealth of 
a box. In the bell curve the temperature means the maximum probability. 

 

Summary 
The distribution of P non-interacting particles in N boxes iscalculated 

for a fair system. Since there is no preference to any configuration of 
particles and boxes, the entropy principle can be applied. It is shown that 
when the number of the particles is negligible as compared to the number 
of boxes, the "bell-like" distribution (which prefers the average) is 
obtained. However, when the number of particles is higher than the 
number of boxes, a long tail distribution is obtained. The obtained long 
tail distribution yields correctly Zipf law, Pareto's rule and Benford's law. 

The Pareto's rule usually is conceived as an evolutionary law. Namely, 
the 20% of the drivers that cause 80% of the accidents are the bad drivers. 
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Maybe the personality of these drivers is the reason for their excessive 
involvement in car accidents. Similarly, there might be good reasons for 
the fact that few people get rich and the majority remains poor. These 
kinds of questions cannot be answered by this kind of analysis. However, 
one should bear in mind that particles without personality, interactions or 
statistical bias are also distributed in the same way. 
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Conclusion 
 
 
 

In this collection of papers, it shown that the "order"which is 
generated around us by evolution and the results of our doing can 
be explained by the propensity of entropy to increase; namely, by 
the second law of thermodynamics. Entropy is conceived by many 
as a disorder, however, that is true only for spares systems. In a 
dense system, entropy is information thatis characterized by a long 
tail distribution.  

In order to apply the second law to sociology and economy, we 
have to define a sociological net. With analogy to the internet, in 
which, in principle, every site can receive and broadcast 
information to any other site we can describe economic network as 
a group of bank accounts that each one of them canreceive or pay 
money to any other account.  

The distribution of links between the sites is similar to that of 
money in the bank accounts. This long tail distribution,whichis 
obtained by maximizing the entropy of the net, is called Planck-
Benford distribution. It is also shown that Planck-Benford 
distribution can predict polls distribution; Gini inequality Index in 
the OECD countries; the percentage of the relative poverty; the 
salaries of the CEO's relative to the average salaries and the 
number of employees.  

Moreover, the Planck-Benford income distribution, being an 
equilibrium distribution (Max Entropy),can provide a standard tool 
for estimatingthe stability of the economy of a given country 
namely closer the income distribution of a country to Planck 
Benford distribution closer the economy to equilibrium. 
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