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Preface 
 
 

The true laboratory is the mind, where behind illusions we uncover the laws of 
truth.  

— Sir Jagadish Chandra Bose 
 

Duration is not a test of true or false.  
— Anne Morrow Lindbergh 

 
If they don’t depend on true evidence, scientists are no better than gossips.  

— Penelope Fitzgerald 
 

In science it often happens that scientists say, 'You know that's a really good 
argument; my position is mistaken,' and then they would actually change their 
minds and you never hear that old view from them again. They really do it. It 

doesn't happen as often as it should, because scientists are human and change is 
sometimes painful. But it happens every day.   

— Carl Sagan 

 
 

nified Growth Theory1 published by Oded Galor is called 
unified because it puts together earlier attempts to explain 
the historical economic growth and the historical growth of 

population. These attempts were made over many years and by 
now they form the established knowledge in economics and in 
demography.  

Unfortunately, the past research was difficult because (1) access 
to data was strongly limited and (2) growth turns out to be 
represented by strongly deceptive distributions. They create an 
illusion of stagnation followed by a sudden explosion, while in fact 
they increase monotonically all the time and there is no sudden 
transition from a slow to fast growth. Data represented by these 
distributions have to be carefully and methodically analysed; 
otherwise conclusions are based on illusions. 

Galor was in a far better position than many of the past 
researchers because he had access to superb and extensive sets of 
data made available by the world renown economist, Angus 
Maddison. These data describe economic growth and the growth of 
population, global, regional and even in individual countries. They 

 
1Galor, O. (2011). Unified Growth Theory. Princeton, New Jersey: Princeton 

University Press. 
 

U 



are a rich source of information, which Galor failed to use. He 
made no attempt to analyse them.  

There is no explanation for his neglect to analyse data 
mathematically because (1) he uses mathematics in his theory and 
thus he is familiar with mathematical procedures and (2) because 
trajectories describing growth of population and economic growth, 
while being deceptive, are trivially easy to analyse. No great skill 
is needed to analyse these distributions. Indeed, there is even no 
need to analyse them mathematically. Reliable conclusions can be 
reached just by using different plots of data. However, 
mathematical analysis, which is simple and easy, helps in a better 
understanding of the mechanism of growth. 

Galor ignored also the earlier evidence published in 1960 that 
the growth of population during the AD section of time was 
hyperbolic. Using this information, the obvious next step would be 
to check whether the same type of growth is applicable to the 
economic growth.  

Rather than using the previously published evidence, he 
systematically presented data in a suitably distorted way to support 
preconceived ideas. He could have made an important discovery 
but he did not. His theory presents nothing new. It is just a 
repetition of old interpretations of the growth of population and of 
economic growth, incorrect interpretations because they are 
contradicted by data. Unified Growth Theory is repeatedly 
contradicted even by the same data, which were used during its 
formulation.  

The presented here Evidence-based Unified Growth Theory is 
firmly supported by a rigorous, mathematical analysis of data 
describing economic growth and the growth of population. It is 
also called unified because it presents a unified explanation of the 
growth of population and of economic growth in the past 2,000,000 
years. 

The terms Malthusian stagnation, Malthusian regime and 
Malthusian trap will be used in the presented here discussion but it 
should be remembered that they are incorrect, because Malthus 
never claimed that his positive checks were causing stagnation or 
creating a certain regime of growth or a trap. On the contrary, he 
observed that they stimulated growth and he even suggested that 
this curious phenomenon should be further investigated. 
Unfortunately, his observation was ignored, dubious concepts were 
later introduced and the name of Malthus was questionably 
attached to them, which Malthus would probably not approve. 
These phrases are used only because in this form, they are 
repeatedly used in the published literature. 



This book is a compilation of my articles describing the 
investigation of the growth of population and of economic growth. 
I start by showing why the established knowledge is scientifically 
unacceptable. I follow this chapter by the introduction of a simple 
method of reciprocal values, which makes the analysis of 
hyperbolic distributions trivially simple. These two introductory 
chapters are followed by the explanation how the Unified Growth 
Theory is contradicted by data. These chapters are in turn followed 
by a detailed study of the growth of human population and of 
economic growth in the past 2,000,000 years; by the discussion of 
earlier attempts to explain the mechanism of hyperbolic growth; by 
the examination of the impacts of Malthusian positive checks; by 
the examination of impacts of demographic catastrophes; by the 
examination of the relation between the growth rate and growth 
trajectories, the essential step leading to the explanation of the 
mechanism of growth; by the formulation of the general law of 
growth; and by the explanation of the mechanism of the hyperbolic 
growth of human population and of the economic growth. 

 
Ron W. Nielsen 

Gold Coast, Australia 
July, 2018 
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Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This introduction is designed as a guide to the topics discussed 

in this book. 
The spontaneous (unconstrained and undisturbed) growth of 

human population is not exponential, as was expected by Malthus, 
but hyperbolic. The same applies to the economic growth. This 
conclusion is in harmony with the earlier investigation carried out 
by von Foerster, Mora and Amiot2 who studied the growth of the 
world population during the AD section of time. However, the 
study presented here extends the analysis to the BC time and to the 
economic growth. It also includes the analysis of regional growth 
of population and regional economic growth.  

Results presented here are also in harmony with the earlier 
study of Deevey3, who observed that growth of human population 
in the past 1,000,000 years was in three stages. However, he 
postulated that each stage was reaching an equilibrium. Results 
presented here confirmed the three stages of growth but 
demonstrated that each stage was hyperbolic. Rather than reaching 
an equilibrium, each stage had a potential to increase to infinity 
and was at a certain time terminated.  

Two well-known theories, the Unified Growth Theory and the 
Demographic Transition Theory 4 , are contradicted by the same 
data, which were used in their support.  

 
2 von Foerster, H., Mora, P., & Amiot, L. (1960). Doomsday: Friday, 13 

November, A.D. 2026. Science, 132, 1291-1295. 
3Deevey, E. S. Jr (1960). The human population. Scientific American,203(9), 195-

204. 
4For references see Vol.2, Chapter 5. 
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In the case of the Demographic Transition Theory, data, which 
appeared to be in support of this theory, were never analysed. 
Conclusions are based on impressions. However, in addition, 
contradicting data are systematically ignored.  

In the case of the Unified Growth Theory, data were also never 
analysed but they were suitably distorted to support preconceived 
ideas. This deliberately distorted and misleading presentation of 
data is used in many other related publications. 

There is no convincing explanation why the Author of the 
Unified Growth theory failed to analyse data mathematically and 
why he was systematically presenting them in a distorted way, 
because (1) he used mathematics in his theory and thus he is 
familiar with mathematical procedures, (2) hyperbolic growth was 
demonstrated as early as in 1960, (3) it is hard to imagine that he is 
not familiar with the fundamental properties of hyperbolic 
distributions, that they increase slowly over a long time and fast 
over a short time but that they increase monotonically, and (4) 
mathematical analysis of hyperbolic distributions is trivially 
simple.  

Precisely the same data, which in their deliberately distorted 
way were used to support the Unified Growth Theory, are in fact in 
its direct contradiction. It is hard to understand why so much work 
was devoted to support the earlier erroneous interpretations of the 
mechanism of growth and why data were not properly analysed to 
check whether these interpretations, which were earlier based on 
limited data and on illusions, could be still supported.   

Income per capita distributions show puzzling characteristics. 
They show that over a long time, income per capita was 
approximately constant but then, most recently, it was increasing 
extremely rapidly. The analysis of data presented here explains 
these puzzling characteristic features. They reflect nothing more 
than mathematical properties of dividing two hyperbolic 
distributions. They do not represent some peculiar mechanism 
applicable only to the economic growth but the feature, which 
applies to any two hyperbolic distributions, with only one 
condition that the singularity of the numerator is earlier than the 
singularity of the denominator. 

Galor describes certain mysteries of growth in his Unified 
Growth Theory and indicates that they should be studied and 
explained. They have now been explained. They have nothing to 
do with the growth of population or with the economic growth. 
They were created by his distorted representations of data. 

Galor describes a puzzling phenomenon of great divergence. 
This claimed phenomenon is also nothing more than a feature 
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created by his distorted representations of data. There was no great 
divergence and there is nothing to explain except to explain how 
the great divergence was created by Galor.    

Industrial Revolution had no impact on changing growth 
trajectories describing growth of population and economic growth, 
even in Western Europe and even in the United Kingdom. Forces 
associated with the Industrial Revolution are reflected in changing 
socio-economic conditions but they did not shape growth 
trajectories of the growth of population and of economic growth. 

With the exception of just one event, demographic catastrophes 
had no impact on shaping the growth of population. The one and 
only exceptional event in the past 2,000,000 years, as presented by 
data, was an unusual convergence of five strong demographic 
catastrophes between AD 1195 and 1470. However, even this 
unusual event caused only a minor disturbance in the growth 
trajectory. When this exceptionally strong crisis was over, growth 
of population was even faster than before. 

Survey of demographic catastrophes indicated that they were, in 
general, too weak to cause a major disruption in the growth of the 
world population even if they had strong local impacts. Analysis of 
Malthusian positive checks also added to the explanation why 
demographic catastrophes did not shape the growth of the world 
population.  

It is interesting that Malthus noticed the dichotomous property 
of his positive checks, i.e. their destructive and regenerating 
effects. He even suggested that the regenerating effects should be 
further investigated. Unfortunately, the original observation of 
Malthus was ignored and the destructive aspect of his positive 
checks was blown out of proportion and used to explain the 
claimed prolonged stagnation, that never happened, while no effort 
was made to understand their regenerating property, which is in 
fact common in nature.  

Mathematical analysis of the effects of Malthusian positive 
checks has now been carried out and it demonstrated that Malthus 
was right. His positive checks increase mortality rates but they also 
increase fertility rates, with the combined effect of increasing the 
growth rate. The regeneration process, or the growth stimulating 
property, is so efficient that the growth is even faster. This is a 
well-known phenomenon but it is an inconvenient property for 
those who created the concept of the prolonged epoch of stagnation 
used in the Demographic Growth Theory and in the Unified 
Growth Theory. 

As a part of the presented here investigations, general law of 
growth was formulated and used to explain the mechanism of 
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hyperbolic growth of population and of economic growth. It turns 
out that the mechanism is exceptionally simple, which is hardly 
surprising because hyperbolic growth is described by an 
exceptionally simple mathematical formula.  

With the exception of two major transitions (46,000 - 27,000 
BC and 425 BC – AD 510) and one minor disturbance (AD 1195 – 
1470), growth of the world population in the past 2,000,000 years 
was consistently hyperbolic. It was steadily increasing without any 
signs of a random behaviour or of a sudden rapid increase towards 
the end of this long time. There was no stagnation and no sudden 
explosion. The same applies to the economic growth, which for the 
most part of the past 2,000,000 years was directly proportional to 
the size of human population. Explanation of the dynamics of 
growth is much simpler than presented in the Unified Growth 
Theory or in the Demographic Growth Theory or in many other 
published discussions, which ignore the earlier evidence of 
hyperbolic growth and which are not supported by a rigorous 
analysis of data but by impressions and conjectures. 
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1. Economic Growth and the growth of 
human population in the past 2,000,000 
years 

 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
he aim of this publication is to analyse the growth of human 
population and the associated economic growth in the past 
2,000,000 years. This work is an extension of our previous 

analysis of the growth of human population in the past 12,000 
years (Nielsen, 2016a) and of the analysis of economic growth 
during the AD era (Nielsen, 2016b). These earlier studies 
demonstrated that the natural tendency for the growth of human 
population and for the economic growth is to follow hyperbolic 
distributions. Hyperbolic growth can be faster or slower but it is 
always prompted by the fundamentally the same mechanism. 

We have shown that the mechanism of hyperbolic growth of 
human population can be easily explained (Nielsen, 2016c). It is a 
growth prompted by just one indispensable force, the biologically-
controlled force of procreation expressed as a difference between 
the biologically-controlled force of sex drive and the biologically-
controlled process of aging and dying. No other forces are needed. 
A change in the growth trajectory occurs only if other forces 
interfere substantially with this fundamental force of growth. In the 
past 12,000 years, there was only one strong interference, around 
AD 1, and one minor interference, around AD 1300. Each time, the 
fundamental character of the growth trajectory was not changed. 
There was only a transition from one hyperbolic trajectory to 
another. The first time, it was a transition from a fast to a slow 
hyperbolic growth, while the second time it was a transition to only 
a slightly faster growth. With the exception of these two, relatively 

T 
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brief transitions, the growth was always hyperbolic. In addition to 
these past transitions we now experience a new strong interference 
reflected in the gradual slowing down growth. The growth of 
population is no longer hyperbolic but it is still close to the 
historical hyperbolic growth. Now, we are going to demonstrate 
that hyperbolic growth prevailed not only in the past 12,000 years 
but also during the past 2,000,000 years. 
 

Data for the early growth of population 
If data for the BC era down to 10,000 BC are scarce, data 

beyond that time are even more difficult to find. However, we now 
have a few estimates from reputable sources and we can use them 
to extend the analysis of the growth of human population down to 
2,000,000 million years ago.  

The earliest estimates were made by Deevey (1960). He 
estimated that during the Lower Palaeolithic (around 1,000,000 
years ago) the size of population was 0.125 million, during the 
Middle Palaeolithic (around 300,000 years ago) it was 1 million 
and 3.34 million during the Upper Palaeolithic (around 25,000 
years ago). Birdsell (1972) estimated 0.4, 1 and 2.2 million for the 
same years, respectively, while Hassan (1981) estimated 0.6, 1.2 
and 6. In 2002, he estimated 0.4, 0.8, 1.2 and 3.3 million at 
1,500,000, 1,000,000, 100,000 and 14,000 years ago, respectively 
(Hassan, 2002). In our calculations, we shall use his updated 
estimates (Hassan, 2002). Incidentally, it should be noted that his 
two values listed in his Table 17.2 (Hassan, 2002, p. 684) are 
clearly misplaced. The values of 0.4 and 0.8 million should have 
been aligned with 1,500,000 and 1,000,000 respectively. However, 
his diagram presented as Figure 17.2 is correct.  

All these estimates are listed in Table 1. The corresponding 
years are expressed as BC. The expression years ago or before 
present are interpreted as before 2000. The years 1,500,000, 
1,000,000 and 300,000 years ago or before present are interpreted 
as 1,500,000 BC, 1,000,000 BC and 300,000 BC. The values for 
the years after100,000 BC were reduced by 2000.  

 
Table 1. Estimates of the size of population before 10,000 BC (in million) 

Year (BC) Deevey (1960) Birdsell (1972) Hassan (2002) Average Values 
1,500,000   0.4 0.4 
1,000,000 0.125 0.4 0.8 0.44 

300,000 1 1  1 
100,000   1.2 1.2 

23,000 3.34 2.2  2.77 
12,000   3.3 3.3 
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Reciprocal values of these data are shown in Figure 1. This 
figure shows also data used in the earlier analysis (Nielsen, 2016a). 
As pointed out earlier (Nielsen, 2014), linearly decreasing 
reciprocal values identify hyperbolic growth, because hyperbolic 
growth is described by the reciprocal of a decreasing straight line: 

 
1

( )S t
a kt




       (1) 

 
where ( )S t is the size of the growing entity, in our case the size of 
population or the size of economic growth, t is the time and a and k 
are positive constants.  

In Figure 1 we see two straight lines. They cross at 34,350 BC. 
Around that time there was a transition from a slow hyperbolic 
trajectory to a significantly faster growth, also described by 
hyperbolic trajectory. This transition was one of only two major 
transitions in the past 2,000,000 years. The later major transition 
was around AD 1 (Nielsen, 2016a). A closer view of this first 
earlier transition is shown in Figure 2. 

 

 
Figure 1. Reciprocal values of the size of population between 1,500,000 

BC and 1000 BC. Decreasing straight lines for the reciprocal values 
identify hyperbolic trajectories (Nielsen, 2014). The two trajectories cross 

at 34,350 BC marking a transition from a slow to a fast hyperbolic 
trajectory. The late BC trajectory was discussed earlier (Nielsen, 2016a). 

The BC years are represented by negative numbers. 
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Figure 2. The first major demographic transition. It occurred between 
46,000 BC and 27,000 BC. It was a transition from a slow hyperbolic 

growth to a significantly faster hyperbolic growth, which prevailed until 
425 BC to be replaced in AD 510 by a significantly slower hyperbolic 

growth during the AD era (Nielsen, 2016a). The BC years are represented 
by negative numbers.  

 
This early transition commenced around 46,000 BC and 

continued until around 27,000 BC. From around that year, the 
growth of the world population started to follow a significantly 
faster hyperbolic trajectory. These new data confirm that the 
natural tendency for the growth of population is to follow 
hyperbolic distributions.  

 
Growth of human population in the past 2,000,000 

years 
Overview 

In Figure 3 we show the average values of data describing the 
growth of the world population in the past 2,000,000 years 
(Biraben, 1980; Birdsell, 1972; Clark, 1968; Cook,1960; Deevey, 
1960; Durand, 1974; Gallant, 1990; Hassan, 2002; Haub, 1995; 
Livi-Bacci, 1997; McEvedy & Jones, 1978; Taeuber & Taeuber, 
1949; Thomlinson, 1975; Trager, 1994, United Nations, 1973; 
1999; 2013; US Census Bureau, 2017). The time scale is in years 
before 2100. We also display the best fit to the data, which most of 
the time is hyperbolic. We can see these hyperbolic distributions 
more clearly in Figure 4. The fit presented in Figure 3, combined 
with the exceptionally slow growth during the first stage, allows 
for the extension of the growth of population to 2,000,000 years 
before 2100 or to approximately to 2,000,000 BC. 
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Figure 3. Growth of human population in the past 2,000,000 years.  
 
Growth of human population in the past 2,000,000 was in three 

major stages but it was not in the stages imagined by Deevey 
(1960). It is remarkable that based on a strongly limited 
information he did realise that the growth of population was in 
three major stages. However, while being close to the correct 
interpretation of the growth of population, Deevey imagined the 
three stages incorrectly. He imagined that each stage was leading 
to an equilibrium, i.e. to a plateau in the growth of population as 
shown in Figure 5. This figure is based on his conceptual diagram 
(Deevey, 1960, p. 198). If we compare his interpretation of growth 
shown in Figure 5 with the growth presented in Figure 3, we can 
see that the growth was indeed in three stages as suggested by 
Deevey but the details of the growth trajectories are clearly 
different. Only the first stage looks similar to the stage suggested 
by Deevey. However, as we shall explain later, this stage also did 
not lead to an equilibrium. 

 



R.W. Nielsen, Evidence-based Unified Growth Theory… Vol.3                         KSP Books 

10 

 
Figure 4. The three major stages of growth of the world population in the 

past 2,000,000 years: (1) between 2,000,000 BC and 27,000 BC, (2) 
between 27,000 BC and AD 510 and (3) between AD 510 and present. 
The last stage experienced a minor distortion between around AD 1195 
and 1470. This distortion caused a small shift in the hyperbolic growth. 

 

 
Figure 5. The ‚three population surges‛ as imagined by Deevey (1960, p. 

198). 
 
It is remarkable, that the currently established knowledge 

(Nielsen, 2016g), which is based on the doctrine of Malthusian 
stagnation, ignores not only results of von Foerster, Mora & Amiot 
(1960) but also the observation of Deevey (1960). These two early 
studies clearly demonstrated that there was no stagnation in the 
growth of population. They indicated that there was a regular and 
well-defined pattern of growth, which contradicts the doctrine of 
Malthusian stagnation.  

Results of von Foerster, Mora & Amiot (1960) demonstrated 
that the growth of human population during the AD era was 
hyperbolic, and consequently not stagnant. It followed a 
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monotonically increasing trajectory. Hyperbolic growth is in the 
direct contradiction of the concept of Malthusian stagnation. 

Hyperbolic growth is slow over a long time (but not stagnant) 
and fast over a short time, so fast that it escapes to infinity at a 
fixed time. It is the growth, which is governed by the same 
mechanism when it is slow and when it is fast. If we want to 
interpret the slow growth as stagnant, we should apply the same 
interpretation to the fast growth. It would be obviously ludicrous to 
describe the growth escaping to infinity at a fixed time as stagnant, 
but because it is always the same growth, then it is also ludicrous 
to describe it as stagnant when it is slow. The concept of 
Malthusian stagnation is based on the incorrect interpretation of 
hyperbolic growth and has no place in science.  

Results of Deevey indicated that over a longer time, extending 
as far back as to 1,000,000 years ago, the growth was in three 
distinctly different stages. It is again a clearly different pattern than 
the pattern suggested by the concept of Malthusian stagnation. The 
doctrine of Malthusian stagnation claims an endless stagnant state 
of growth, characterised by unpredictable, random fluctuations 
often described as Malthusian oscillations. Hyperbolic growth is 
definitely predictable and consequently it suggests an entirely 
different interpretation of the mechanism of growth.  

Studies of von Foerster, Mora and Amiot (1960) and of Deevey 
(1960) indicated that there was nothing chaotic about the growth of 
population. They indicated that there was a certain regular pattern. 
Such a regular pattern can hardly be expected to be produced by 
random forces of growth.   

In order to understand the growth of population in the past 
2,000,000 years, it is useful to discuss separately its three stages of 
growth as presented in Figure 4: (1) between 2,000,000 BC and 
27,000 BC, (2) between 27,000 BC and AD 510, and (3) between 
AD 510 and present. Each of these stages is described by 
hyperbolic growth followed by a transition to the next stage. 
However, the last stage contains a fine structure expressed as a 
slight shift in the hyperbolic distribution.  

Mathematics of growth 
Parameters describing the growth of population in the past 

2,000,000 years are listed in Table 2. They are: a and k, for the 
hyperbolic growth and ia ( i  0 to n) and ib ( i  0 to 1n ) for 
transitions. They can be used to calculate the size of population 

( )S t and the growth rate ( )R t at any given time. For these 
parameters, the size of population is in billions. The time is in 
years and it is positive for the AD era and negative for the BC era.  
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Table 2 presents also the range of ( )S t and ( )R t values for 
hyperbolic distributions, which are also the range of values for 
transitions, because the end of a given hyperbolic growth is the 
beginning of a transition while the beginning of a hyperbolic 
growth is the end of a preceding transition.  

Mathematics of growth of population is exceptionally simple. 
As discussed earlier (Nielsen, 2016a, 2016c) and as shown in 
Figures 3 and 4, the growth was hyperbolic, except when there was 
a relatively brief transition. Hyperbolic growth is described by a 
very simple mathematical expression, presented as eqn (1), which 
is a solution of a very simple differential equation: 

 
1 ( )

( )
( )

dS t
kS t

S t dt
 .       (2) 

 
Transitions are described by a similar differential equation: 
 

1 ( )
( ) ( )

( )

dS t
k t S t

S t dt
 .       (3) 

 
Table 2. Parameters describing growth of human population in the past 
2,000,000 years.  

Hyperbolic Growth 
 
1( ) ( )S t a kt   ; ( ) ( )R t kS t  

Transitions 
1

1

0

( )

n
i

i

i

S t b t






 
 
 
 
 ; 

0

( )

n
i

i

i

k t a t



 ; 

( ) ( ) ( )R t k t S t  

Years Parameters Years Parameters 

2.000,000 –  
46,000 BC 

2,000,000 
BC 

 

46,000 BC 

27.120 10a  

31.296 10k    

5( ) 3.027 10S t    

5( ) 3.923 10 %R t    

6( ) 1.296 10S t    

4( ) 1.680 10 %R t    

46,000 – 
27,000 

BC 

2
0 9.247 10b   

2
1 9.990 10b   

6
2 1.966 10b   

11
3 1.295 10b     

2
0 9.990 10a  

1
1 1.808 10a   

11
2 3.885 10a    

 

27,000 – 425 
BC 

 
27,000 BC 

02.282 10a  

22.210 10k    

6( ) 1.682 10S t    

425 BC 
– AD 
510 

0
0 3.834 10b  

3
1 2.347 10b  
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425 BC 

3( ) 3.718 10 %R t    

8( ) 1.406 10S t    

1( ) 3.108 10 %R t    

5
2 1.330 10b  

8
3 2.493 10b     

3
0 2.347 10a   

5
1 2.659 10a   

8
2 7.479 10a    

AD 510 – 
1195 

 
AD 510 

 

AD 1195 

06.940 10a  

33.448 10k    

8( ) 1.930 10S t    

2( ) 6.654 10 %R t    

8( ) 3.546 10S t    

1( ) 1.223 10 %R t    

AD 
1195 – 
1470 

2
0 2.903 10b   

0
1 1.022 10b  

3
2 1.309 10b   

7
3 7.326 10b  

10
4 1.517 10b   

0
0 1.022 10a   

3
1 2.618 10a  

6
2 2.198 10a   

10
3 6.068 10a    

AD 1470 – 
1950 

 
AD 1470 

 

AD 1950 

09.123 10a  

34.478 10k    

8( ) 3.935 10S t    

1( ) 1.762 10 %R t    

9( ) 2.550 10S t    

0( ) 1.142 10 %R t    

AD 
1950 – 
2016  

3
0 2.001 10b  

0
1 2.928 10b   

3
2 1.428 10b  

7
3 2.323 10b   

0
0 2.928 10a  

3
1 2.856 10a   

7
2 6.968 10a    

( )S t - the size of population. ( )R t - the growth rate. In mathematical formulae, 
time is in years and it has positive values for the AD era and negative for the BC 
era. Furthermore, for the listed parameters, the size of population is in billions. 
The growth rate given by the mathematical formulae is not expressed in per cent.  
 

Parameter k, whether constant or dependent on time, is the 
driving force divided by the resistance to growth (Nielsen, 2016c). 
For the growth of population, the driving force is the force of 
procreation given by the difference between the biologically 
controlled force of sex drive and the biologically controlled aging 
and dying. It is a spontaneous, unrestrained and fundamental force 
of growth, which has to be considered in any attempt to explain the 
mechanism of growth of human population. Other forces may be 
added but only if necessary, i.e. if this fundamental force is unable 
to explain the mechanism of growth. The study presented here and 
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in earlier publications demonstrates that this force alone explains 
why the growth of population was, most of the time, hyperbolic 
(Nielsen, 2016a; 2016c; 2016d; von Foerster, Mora & Amiot, 
1960). 

During transitions, the fundamental force of procreation does 
not change. There is no need to assume that it does. Only the 
resistance to growth is changing and this change is described by 

( )k t . 
In the past, every change in the resistance to growth was 

leading to a new, constant resistance and consequently to a new 
hyperbolic growth. The current transition, which commenced 
around 1950, also describes a change in the resistance to growth 
but the future trajectory is unknown. 

The solution of the eqn (3) is given by the following expression: 
 

1
( )

( )
S t

k t dt
 


.      (4) 

 
In the simplest case, when ( )k t k const  , the eqn (3) is the 

same as eqn (2) and the solution (4) is the same as eqn (1). It is the 
reciprocal of a linear function. 

If we assume that ( )k t is represented by the n-order polynomial, 
if 

 

0

( )
n

i
i

i

k t a t


        (5) 

 
then 
 

1
1

0

( )
n

i
i

i

S t b t






 
  
 
 .              (6) 

 
We should also notice that eqns (2) and (3) describe the growth 

rate ( )R t . Thus, if we know the size of the population and k or 

( )k t , we can also calculate the corresponding growth rate at a 
given time: 

 
( ) ( ) ( )R t k t S t .       (7) 
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For the hyperbolic growth [i.e. for the first-order hyperbolic 
growth given by the eqn (1)]  ( )k t k const  and the growth rate 
is directly-proportional to the size of population. 

Stage 1: 2,000,000-27,000 BC 
This stage is made of a hyperbolic growth between 2,000,000 

BC and 46,000 BC followed by a transition to the next stage. The 
transition was between 46,000 BC and 27,000 BC (see Figures 2 
and 4).  

In Figures 3 and 4, this stage looks different than the other two 
stages and it resembles the distribution outlined by Deevey (see 
Figure 5). However, it is just an illusion created by using 
logarithmic scales of reference and Deevey appears to have been 
misguided by this illusion. He imagined that it was a fast growth 
followed by an equilibrium, or a plateau. However, the calculated 
curve shown in Figures 3 and 4 is hyperbolic. It was not a fast 
growth followed by equilibrium but a monotonically increasing 
growth. 

We know that the growth in the first stage was hyperbolic 
because we have shown earlier (see Figure 1) that the reciprocal 
values of the size of the population during that time were following 
closely a straight line, which identifies hyperbolic growth (Nielsen, 
2014). Why then does this stage look so much different? How to 
explain the peculiar shape presented in Figures 3 and 4? 

First, it is important to notice that hyperbolic growth during this 
first stage was exceptionally slow, so slow that if continued it 
would not escape to infinity until around AD 549,391. Second, we 
have to remember that logarithmic scales, while being useful in 
displaying a wide range of data, they also introduce unavoidable 
distortions. In Figure 3 and 4 we have double distortion because we 
are using two logarithmic scales. The further we go back in time, 
the stronger is the compression of the displayed data, but there is 
also an increasing compression of the displayed size of the 
population as we move up along the vertical scale. 

Every marked section of the first (left-most) cycle of the 
horizontal scale represents a compression of 1,000,000 years. The 
vertical scale introduces similar distortion but in reverse order. 
Here the first cycle represents an exceptionally stretched scale. 
This compressing and stretching, combined with the exceptionally 
slow growth during the first stage creates an illusion of a fast 
growth followed by an equilibrium, illusion so strong that it caused 
Deevey not only to see an incorrect pattern but also to try to 
explain its mechanism.  

A simple way to dispel this illusion is to use linear scales as 
shown in Figure 6. In this figure, we present precisely the same 
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data (for the Stage 1) and the same hyperbolic distribution as 
shown in Figures 3 and 4 but now we use linear scales for the time 
and for the size of the population. 

We can now see clearly that the growth of population was 
increasing monotonically. There is obviously no sign of any 
plateau or equilibrium and no hope of having such a plateau in the 
future because the growth was hyperbolic, escaping to infinity at a 
fixed time. Deevey’s claim of plateaus and his attempts to explain 
their mechanism was based on illusion.   

 

 
Figure 6. The first stage of hyperbolic growth between 2,000,000 BC and 

46,000 BC displayed using linear scales for the time and for the size of 
population. The illusion of a fast growth followed by an equilibrium 

created by the double-logarithmic scales used by Deevey (1960, p.198) 
and in Figures 3 and 4 has now disappeared. It is now clear that the 
growth is increasing monotonically and that it does not lead to an 

equilibrium. 
 
During this early stage of the BC growth, the size of population 

increased from the estimated 0.4 million in 1,500,000 BC to 1.3 
million in 46,000 BC. The calculated value in 1,500,000 BC is 0.38 
million. If we extend the fitted hyperbolic distribution to 2,000,000 
BC, then the calculated size of population in that year is 0.3 
million. If continued, the size of population would increase to one 
billion in AD 548,620.  

Reciprocal values of data shown in Figure 1 demonstrates that 
this exceedingly slow hyperbolic growth was replaced by a much 
faster growth. The transition occurred between 46,000 BC and 
27,000 BC (see Figure 2). 

The size of the population during this transition increased from 
1.3 million in 46,000 BC to 1.7 million in 27,000 BC. This 
transition converted the exceedingly slow hyperbolic growth 
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during the first stage to a 17 times faster hyperbolic growth (as 
measured by the parameter k) during the second stage, the 
difference in the intensity of growth reflected in the distinctly 
different values of the gradient of the reciprocal values of the size 
of the population shown in Figure 1. During that time, the 
resistance to growth decreased by a huge factor of around 17 and 
starting from around 27,000 BC the growth of population was 
much faster than before 46,000 BC.  

The timing of this transition agrees well with archaeological 
and anthropological data. Even though the emergence of modern 
humans is claimed to have been between 150,000 and 200,000 
years ago (Mellars, et al., 2007) the progress in their development 
was slow until around 50,000 BC, as demonstrated by 
archaeological evidence (Klein, 1989; 1995; Mellars, 1989; 
Stringer & Gamble, 1993). Human evolution appears to have 
experienced a great leap forward around that time. 

For a long time since their emergence, modern humans were not 
much different than other hominins ‚and it was only around 
50,000-40,000 years ago that a major behavioral difference 
developed‛ (Klein, 1995, p. 167). This first transition in the 
hyperbolic growth appears to coincide also with the extinction of 
Neanderthals, first in Europe and later in and later in other parts of 
the world, marking the beginning of the undisputed domination of 
Homo sapiens (Higham, et al., 2014). 

Forces operating during the first transition between 46,000 BC 
and 27,000 BC from an earlier large resistance to growth before 
around 46,000 BC to significantly smaller resistance after around 
27,000 BC were of a social and intellectual nature. The long race 
between different representatives of hominins was over. One by 
one they were left behind and became extinct. Finally, the last two 
remaining were Homo floresiensis and Homo neanderthalensis but 
they also were eliminated or virtually eliminated around the time of 
the beginning of the first transition, i.e. around 50,000 BC. Now, 
only modern humans, represented by Homo sapiens, remained. The 
first transition, between 46,000 BC and 27,000 BC was a transition 
to a new era of the exceptionally fast and long-lasting hyperbolic 
growth, the unique growth which was never to be repeated. 

This complete freedom of growth was eventually restricted, not 
by forces of nature and not by the competition with other 
representatives of the genus Homo because they were extinct for a 
long time but by the strong competition between humans. 
However, in 27,000 BC, at the end of the first transition, this 
change was still long time into the future. The gained momentum 
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of the free growth was to propel the growth of human population 
for many thousands of years. 

Stage 2: 27,000 BC - AD 510 
Stage 2 is made of a fast hyperbolic growth between 27,000 BC 

and 425 BC, followed by a transition to a slower hyperbolic 
trajectory during the AD era. The transition took place between 
425 BC and AD 510. (In our earlier publications, we have labelled 
this transition as being roughly between 500 BC and AD 500.)  

Hyperbolic growth between 27,000 BC and 425 BC was the 
fastest growth (as defined by the parameter k) in the past 2,000,000 
years. During that time, the size of population increased from 1.7 
in 27,000 BC million to 140 million in 425 BC, representing a 
nearly 82-fold increase. In contrast, there was only around 38-fold 
increase between AD 510 and present. If continued, this fast BC 
growth would escape to infinity at the end of 104 BC. We have 
come very close to experiencing the so-called population explosion 
at the end of the BC era. 

In deciding which hyperbolic growth is fast we should not be 
confused by the growth during the AD era. It reached a higher size 
of population in a shorter time but we should remember that it also 
started with a significantly larger size of population, around 190 
million, compared with only 1.7 million for the hyperbolic growth 
between 27,000 BC and 425 BC.  

The transition between 425 BC and AD 510 can be described 
by the reciprocal of the third-order polynomial. During this 
transition, the resistance to growth increased by a factor of 6.4. As 
discussed earlier (Nielsen, 2016c), forces shaping this transition 
appear to have been of political nature. This transition coincides 
with the domination of Roman Empire over large areas 
surrounding the Mediterranean Sea. It also coincides with the 
accelerated process of the formation of countries in various parts of 
the world and with the rapidly changing political landscape 
(Teeple, 2002). From the complete freedom in around 27,000 BC, 
humans became slaves of their own design. They have invented 
many ways of self-destruction, bondage and oppression, which 
eventually led to a new hyperbolic growth characterised now by a 
larger resistance to growth. Humans appear to be their own best 
enemies and they might eventually cause their own extermination.  

Stage 3: AD 510 - present 
This stage is also made of a hyperbolic growth followed by a 

transition, which commenced around 1950. We have shown earlier 
(Nielsen, 2016a) that the growth of population between AD 510 
and 1950 can be well described using a single hyperbolic 
distribution. However, we have also pointed out that there was a 
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minor disturbance in this hyperbolic growth between around AD 
1200 and 1400. This disturbance caused only a small shift in the 
hyperbolic growth (see Figure 4).  

The best description of data between AD 510 and 1950 is given 
by two, approximately parallel hyperbolic trajectories separated by 
a small transition between around AD 1195 and 1470. The two 
hyperbolic trajectories, before AD 1195 and after AD 1470 are 
virtually identical. Measured by the parameter k, hyperbolic 
growth after AD 1470 was only 30% faster than the hyperbolic 
growth before AD 1195.  

As discussed earlier (Nielsen, 2016a), this minor transition 
between AD 1195 and 1470 coincides with a unique event of a 
convergence of five demographic catastrophes. This is the only 
example showing a correlation between demographic catastrophes 
and the growth of population. However, the combined impact was 
small. 

From around 1950, there was at first a small surge in the growth 
of population followed soon by a consistently slowing down 
growth. The data for the world population from that year are well 
documented by the US Bureau of Census (2017) but they can be 
also described using third-order polynomial with parameters listed 
in Table 2 (see Figure 7). 
 

 
Figure 7. Population data (US Census Bureau, 2017) are compared 

with the third-order polynomial distribution. Its parameters are listed in 
Table 2. This is just a mathematical description of data.  

 
This current transition appears to be associated with the 

increasing impact of Malthusian preventative checks (Malthus, 
1798). The outcome of this transition is unknown. If the past 
pattern of growth is repeated, it could be a transition to a new 
hyperbolic trajectory. However, hyperbolic growth of population is 
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possible only if the dominating force of growth is the biologically-
controlled force of procreation. It is unlikely that this force alone 
will control the future growth of population. Under new conditions, 
with the increasing awareness of the need to control growth, the 
future growth of population could follow an entirely different 
trajectory. For the first time in human existence it will probably not 
be a hyperbolic growth. 

The fitted distribution shown in Figure 3 with parameters listed 
in Table 2 can be now used to calculate the size of population at 
any time in the past 2,000,000 years. The calculated values are 
listed in Tables A1-A3 in the Appendix.   

 
Economic growth in the past 2,000,000 years 

De Long (1998) pointed out that income per capita (GDP/cap) 
can be used to estimate the past economic growth expressed in 
terms of the Gross Domestic Product (GDP). It is because the 
GDP/cap values quickly converge to an approximately constant 
value when we move back in time (see Figure 8). This property is 
nothing more than the mathematical property of dividing two 
hyperbolic distributions (Nielsen, 2017a) but it is useful for 
calculating the GDP values from the population data. What it 
simply means is that as we move back in time, the size of the GDP 
becomes approximately directly proportional to the size of the 
population. They follow virtually the same trajectories but 
displaced by an approximately constant factor.  

Parameters describing the fitted GDP/cap distribution shown in 

Figure 8 are 21.684 10a   and 68.539 10k    for the GDP 
expressed in billions of the 1990 international Geary-Khamis 

dollars and 07.739 10a   and 33.765 10k   for the Maddison’s 
population data expressed in billions.  

The fitted curve is a linearly modulated hyperbolic distribution 
(Nielsen, 2017a), which increases to infinity at a fixed time. For 
the distribution displayed in Figure 8, the point of singularity is in 
1971. The growth of income per capita came close to this critical 
point but it bypassed it by a small margin of about 20 years. 
Income per capita continues now to increase along a new 
trajectory.  

We can see that the calculated curve and the data representing 
the GDP/cap values quickly converge to a constant value when we 
move back in time. We can use this property to estimate the size of 
the GDP down to 2,000,000 BC. Results are presented in Tables 
A4-A6 in the Appendix.   
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Figure 8. Growth of the Gross Domestic Product per capita (GDP/cap) 

during the AD era. The full circles represent Maddison’s data (Maddison, 
2010) and the line is the best fit to the data (Nielsen, 2016e). The 
calculated curve is the linearly modulated hyperbolic distribution 

(Nielsen, 2017a). 
 
De Long (1998) carried out similar calculations. However, he 

used population data listed by Kremer (1993), which were taken 
from two sources: McEvedy & Jones (1978) and Deevey (1960). 
Our results are based on the analysis of all available data.   

Furthermore, De Long assumed a constant GDP/cap value 
below AD 1500. This is good approximation below AD 1000 but 
not between AD 1000 and 1500. We shall use consistently the 
fitted trajectories but only below 1950 for two reasons: (1) good 
year-by-year data for the GDP starting from AD 1950 are already 
available (Maddison, 2010; GGDC, 2013) and (2) the calculated 
distribution of income per capita reproduces the data only up to 
1950. From 1950, the GDP/cap values do not follow the linearly 
modulated hyperbolic distribution.   

The GDP values presented in Tables A4-A6 are based on the 
best fits to the population data and to the GDP/cap data up to 1950. 
From 1950, the GDP values are as listed by Maddison (2010) for 
the years of up to 2008 and as calculated from the GDP/cap data 
listed by GGDC (2013) for 2009 and 2010 by using population 
data of the US Census Bureau (2017).  

 
Summary and conclusions 

We have carried out analysis of the growth of population in the 
past 2,000,000 years using data from a variety of sources (Biraben, 
1980; Birdsell, 1972; Clark, 1968; Cook,1960; Deevey, 1960; 
Durand, 1974; Gallant, 1990; Hassan, 2002; Haub, 1995; Livi-



R.W. Nielsen, Evidence-based Unified Growth Theory… Vol.3                         KSP Books 

22 

Bacci, 1997; McEvedy & Jones, 1978; Taeuber & Taeuber, 1949; 
Thomlinson, 1975; Trager, 1994, United Nations, 1973; 1999; 
2013; US Census Bureau, 2017). We have confirmed the earlier 
observation of Deevey (1960) that the growth of the world 
population was in three major stages. However, our analysis 
reveals that Deevey made a mistake by imagining that each stage 
was at first fast but then was reaching a certain equilibrium. Our 
analysis shows that each stage was hyperbolic. Each stage was 
increasing monotonically and was never levelling off to any form 
of equilibrium. On the contrary, if not terminated, hyperbolic 
distributions increase to infinity at a fixed time. 

Nothing can increase to infinity. Consequently, any hyperbolic 
growth has to be, at a certain stage, terminated, which is not 
unusual because many other types of growth not only can but also 
are at a certain stage terminated. For instance, the better known 
exponential growth does not increase to infinity at a fixed time but 
if continued over a sufficiently long enough time, it leads to such 
large values that it becomes unsustainable. 

The three stages of growth are: (1) 2,000,000 BC to 27,000 BC; 
(2) 27,000 BC to AD 510, and (3) AD 510 to present. Each of the 
listed stages includes a transition to a new growth. The transitions, 
as revealed by the analysis of data, are: (1) 46,000 BC to 27,000 
BC, (2) 425 BC to AD 510, and (3) AD 1950 to present. During 
the third stage of growth, there was a minor transition between AD 
1195 and 1470 but it only produced a slight shift in the hyperbolic 
trajectory. 

Hyperbolic growth of population is generated by only one 
predominant force, the force of procreation, which is expressed as 
the difference between the ever-present, biologically-controlled 
force of sex drive and the biologically-controlled force of aging 
and dying (Nielsen, 2016c). This essential force has to be included 
in any explanation of the mechanism of growth of human 
population and it turns out that this force alone generates 
hyperbolic growth. As long as the growth remains hyperbolic, 
there is no need to include any other force. When a hyperbolic 
growth is being terminated or strongly disturbed, as between AD 
1195 and 1470, other forces are strong enough to interfere with the 
usually dominant, biologically controlled, force of procreation. 

Hyperbolic growth is characterised uniquely by parameter k 
[see eqn (1)]. This parameter is the ratio of the force of growth and 
of the resistance to growth. Working on the fundamental scientific 
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principle of parsimony we can assume that during each hyperbolic 
growth the fundamental force of procreation per person remains 
unchanged and only resistance to growth is different. Transitions 
are associated with changing the resistance to growth. This change 
is described by the time-dependent parameter ( )k t [see eqn (3) and 

Table 2]. 
Each, of the first two stages of growth of human population in 

the past 2,000,000 years was terminated by a transition to a new 
hyperbolic growth. The third stage is now also being terminated. 
This transition commenced around 1950 but its outcome is 
unknown. 

The first hyperbolic stage of growth was slow but during the 
first transition the resistance to growth decreased by a factor of 
around 17. The second stage was characterised by a fast hyperbolic 
growth, so fast that if continued it would have escaped to infinity 
around 104 BC. Fortunately, this fast hyperbolic growth was 
terminated. During the second transition, between 425 BC and AD 
510, the resistance to growth increased by an approximate factor of 
6.4. The new hyperbolic trajectory was significantly slower than 
the immediately preceding BC trajectory. 

Each of the past two major transitions, as well as the current 
transition, appears to be associated with significant changes in the 
style of living. The first transition between 46,000 BC and 27,000 
BC appears to have been associated with the surge in the evolution 
of Homo Sapiens (Klein, 1989; 1995; Mellars, 1989; Stringer & 
Gamble, 1993). Forces, which eventually reduced substantially the 
resistance to growth appear to have been of social and intellectual 
character. The second major transition between 425 BC and AD 
510 appears to have been of political nature as reflected in the 
apparently intensified changes in the political landscape (Teeple, 
2002). The current third major transition appears to be moulded 
predominantly, if not exclusively, by the Malthusian preventative 
checks (Malthus, 1798). 

The minor transition between AD 1195 and 1470 appears to 
have been of an entirely different nature. It was not associated with 
the change in the style of living but rather with the one and only 
example of a strong impact of demographic catastrophes caused by 
an unusual convergence of five major catastrophic events (Nielsen, 
2016a; 2017b). This transition caused a 30% decrease in the 
resistance to growth, reflecting the efficient action of the 
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regeneration process triggered by the Malthusian positive checks 
(Malthus, 1798; Nielsen, 2016f). 

Using the best fit to the data we have calculated the size of 
human population in the past 2,000,000 years. These values are 
listed in Tables A1-A3. Using results of our earlier analysis 
(Nielsen, 2016e) of the Gross Domestic Product per capita 
(GDP/cap) and the current analysis of population data, we have 
also listed the estimated values of the GDP in the past 2,000,000 
years until 1950. The GDP values from 1950 to 2008 were taken 
directly from the publication of Maddison (2010). The last two 
values, for 2009 and 2010 were calculated using the GDP/cap 
values listed by GGDC (2013) and the population data of the US 
Census Bureau (2017). All these values, expressed in billions of 
1990 international Geary-Khamis dollars are listed in Tables A4-
A6. 
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Appendices 
 

Table A1. Growth of human population from 2,000,000 BC to 1BC 
Year 
[BC] 

Population 
[Million] 

Year 
[BC] 

Population 
[Million] 

Year 
[BC] 

Population 
[Million] 

2,000,000 0.30 7000 6.56 380 160.53 
1,500,000 0.38 6000 7.67 370 165.35 
1,000,000 0.50 5500 8.38 360 170.22 

800,000 0.57 5000 9.24 350 175.15 
600,000 0.67 4500 10.29 340 180.11 
400,000 0.81 4000 11.61 330 185.09 
200,000 1.03 3500 13.32 320 190.09 
100,000 1.19 3000 15.62 310 195.07 

80,000 1.23 2800 16.78 300 200.04 
60,000 1.27 2600 18.12 290 204.96 
50,000 1.29 2400 19.70 280 209.82 
46,000 1.30 2200 21.58 270 214.61 
42,000 1.31 2000 23.85 260 219.29 
40,000 1.32 1900 25.18 250 223.85 
38,000 1.35 1800 26.66 240 228.28 
36,000 1.37 1700 28.33 230 232.54 
34,000 1.41 1600 30.23 220 236.63 
32,000 1.46 1500 32.39 210 240.51 
30,000 1.53 1400 34.89 200 244.18 
28,000 1.62 1300 37.80 190 247.62 
27,000 1.68 1200 41.25 180 250.80 
26,000 1.75 1100 45.39 170 253.73 
25,000 1.82 1000 50.45 160 256.38 
24,000 1.89 900 56.78 150 258.75 
23,000 1.98 800 64.93 140 260.83 
22,000 2.07 700 75.81 130 262.61 
21,000 2.17 600 91.08 120 264.10 
20,000 2.27 500 114.03 110 265.29 
19,000 2.39 490 116.98 100 266.19 
18,000 2.53 480 120.08 90 266.80 
17,000 2.68 470 123.36 80 267.12 
16,000 2.85 460 126.82 70 267.17 
15,000 3.04 450 130.47 60 266.95 
14,000 3.26 440 134.35 50 266.49 
13,000 3.51 430 138.46 40 265.78 
12,000 3.80 425 140.61 30 264.85 
11,000 4.15 420 142.05 20 263.71 
10,000 4.57 410 146.54 10 262.37 

9000 5.09 400 151.12 1 261.01 
8000 5.73 390 155.78   
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Table A2. Growth of human population from AD 1 to 1330 
Year     
[AD] 

Population 
[Million] 

Year     
[AD] 

Population 
[Million] 

Year     
[AD] 

Population 
[Million] 

1 260.69 450 188.30 900 260.63 
10 259.18 460 188.67 910 262.99 
20 257.36 470 189.19 920 265.40 
30 255.41 480 189.87 930 267.85 
40 253.35 490 190.72 940 270.34 
50 251.19 500 191.75 950 272.89 
60 248.95 510 192.99 960 275.48 
70 246.64 520 194.28 970 278.12 
80 244.28 530 195.59 980 280.82 
90 241.88 540 196.92 990 283.56 

100 239.45 550 198.27 1000 286.36 
110 237.00 560 199.63 1010 289.22 
120 234.54 570 201.02 1020 292.13 
130 232.09 580 202.42 1030 295.10 
140 229.66 590 203.84 1040 298.14 
150 227.24 600 205.28 1050 301.23 
160 224.85 610 206.75 1060 304.39 
170 222.50 620 208.23 1070 307.62 
180 220.19 630 209.74 1080 310.92 
190 217.94 640 211.27 1090 314.29 
200 215.73 650 212.82 1100 317.73 
210 213.59 660 214.39 1110 321.25 
220 211.51 670 215.99 1120 324.85 
230 209.49 680 217.61 1130 328.53 
240 207.55 690 219.25 1140 332.30 
250 205.68 700 220.92 1150 336.15 
260 203.90 710 222.62 1160 340.09 
270 202.19 720 224.34 1170 344.12 
280 200.56 730 226.09 1180 348.26 
290 199.03 740 227.86 1190 352.49 
300 197.58 750 229.67 1195 354.64 
310 196.22 760 231.50 1200 355.85 
320 194.96 770 233.36 1210 359.73 
330 193.79 780 235.26 1220 363.23 
340 192.72 790 237.18 1230 366.33 
350 191.75 800 239.14 1240 369.01 
360 190.89 810 241.13 1250 371.27 
370 190.13 820 243.15 1260 373.11 
380 189.48 830 245.20 1270 374.55 
390 188.95 840 247.29 1280 375.59 
400 188.52 850 249.42 1290 376.28 
410 188.22 860 251.58 1300 376.64 
420 188.05 870 253.79 1310 376.73 
430 188.00 880 256.03 1320 376.58 
440 188.08 890 258.31 1330 376.26 
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Table A3. Growth of human population from AD 1340 to 2016 
Year     
[AD] 

Population 
[Million] 

Year     
[AD] 

Population 
[Million] 

Year     
[AD] 

Population 
[Million] 

1340 375.83 1770 834.64 1974 3,984.30 
1350 375.35 1780 867.04 1975 4,057.11 
1360 374.90 1790 902.06 1976 4,130.85 
1370 374.54 1800 940.03 1977 4,205.51 
1380 374.36 1810 981.33 1978 4,281.06 
1390 374.45 1820 1,026.44 1979 4,357.47 
1400 374.90 1830 1,075.88 1980 4,434.73 
1410 375.80 1840 1,130.33 1981 4,512.79 
1420 377.26 1850 1,190.59 1982 4,591.63 
1430 379.41 1860 1,257.63 1983 4,671.22 
1440 382.38 1870 1,332.68 1984 4,751.52 
1450 386.34 1880 1,417.25 1985 4,832.48 
1460 391.48 1890 1,513.28 1986 4,914.08 
1470 393.49 1900 1,623.26 1987 4,996.26 
1480 400.54 1910 1,750.49 1988 5,078.98 
1490 407.86 1920 1,899.36 1989 5,162.20 
1500 415.45 1930 2,075.91 1990 5,245.86 
1510 423.32 1940 2,288.63 1991 5,329.92 
1520 431.50 1945 2,412.23 1992 5,414.31 
1530 440.00 1950 2,538.51 1993 5,498.99 
1540 448.84 1951 2,587.24 1994 5,583.89 
1550 458.05 1952 2,636.93 1995 5,668.96 
1560 467.64 1953 2,687.57 1996 5,754.14 
1570 477.64 1954 2,739.19 1997 5,839.36 
1580 488.08 1955 2,791.79 1998 5,924.57 
1590 498.98 1956 2,845.38 1999 6,009.70 
1600 510.39 1957 2,899.97 2000 6,094.69 
1610 522.32 1958 2,955.57 2001 6,179.48 
1620 534.83 1959 3,012.18 2002 6,263.99 
1630 547.95 1960 3,069.82 2003 6,348.16 
1640 561.73 1961 3,128.47 2004 6,431.94 
1650 576.23 1962 3,188.16 2005 6,515.25 
1660 591.49 1963 3,248.87 2006 6,598.04 
1670 607.58 1964 3,310.62 2007 6,680.24 
1680 624.57 1965 3,373.41 2008 6,761.79 
1690 642.54 1966 3,437.22 2009 6,842.64 
1700 661.57 1967 3,502.07 2010 6,922.73 
1710 681.77 1968 3,567.94 2011 7,002.00 
1720 703.24 1969 3,634.83 2012 7,080.40 
1730 726.10 1970 3,702.74 2013 7,157.89 
1740 750.50 1971 3,771.65 2014 7,234.42 
1750 776.60 1972 3,841.55 2015 7,309.94 
1760 804.57 1973 3,912.44 2016 7,384.42 
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Table A4. Economic growth from 2,000,000 BC to 1BC 
Year     GDP  Year     GDP  Year     GDP  

2,000,000 0.13 7000 2.92 380 73.30 
1,500,000 0.17 6000 3.42 370 75.51 
1,000,000 0.22 5500 3.74 360 77.75 

800,000 0.25 5000 4.12 350 80.01 
600,000 0.30 4500 4.60 340 82.29 
400,000 0.36 4000 5.19 330 84.58 
200,000 0.45 3500 5.96 320 86.87 
100,000 0.52 3000 7.00 310 89.17 

80,000 0.54 2800 7.53 300 91.45 
60,000 0.56 2600 8.14 290 93.71 
50,000 0.57 2400 8.85 280 95.95 
46,000 0.57 2200 9.70 270 98.16 
42,000 0.58 2000 10.74 260 100.31 
40,000 0.59 1900 11.34 250 102.42 
38,000 0.59 1800 12.02 240 104.46 
36,000 0.61 1700 12.78 230 106.43 
34,000 0.62 1600 13.64 220 108.31 
32,000 0.65 1500 14.63 210 110.11 
30,000 0.68 1400 15.76 200 111.81 
28,000 0.72 1300 17.09 190 113.40 
27,000 0.74 1200 18.67 180 114.88 
26,000 0.77 1100 20.56 170 116.24 
25,000 0.80 1000 22.87 160 117.48 
24,000 0.84 900 25.77 150 118.59 
23,000 0.87 800 29.49 140 119.56 
22,000 0.91 700 34.47 130 120.40 
21,000 0.96 600 41.46 120 121.11 
20,000 1.01 500 51.98 110 121.67 
19,000 1.06 490 53.33 100 122.11 
18,000 1.12 480 54.75 90 122.41 
17,000 1.19 470 56.25 80 122.58 
16,000 1.26 460 57.84 70 122.63 
15,000 1.35 450 59.52 60 122.55 
14,000 1.44 440 61.29 50 122.36 
13,000 1.56 430 63.18 40 122.06 
12,000 1.69 425 64.16 30 121.66 
11,000 1.84 420 64.82 20 121.16 
10,000 2.03 410 66.88 10 120.57 

9000 2.26 400 68.98 1 119.97 
8000 2.55 390 71.12   
Year: BC; GDP: Gross Domestic Product, billion 1990 international 
Geary-Khamis dollars. 

 
 
 
 
  



R.W. Nielsen, Evidence-based Unified Growth Theory… Vol.3                         KSP Books 

29 

Table A5. Economic growth from AD 1 to 1330 
Year     GDP  Year     GDP  Year     GDP  

1 119.83 450 87.59 900 123.89 
10 119.15 460 87.79 910 125.10 
20 118.34 470 88.07 920 126.33 
30 117.47 480 88.42 930 127.59 
40 116.55 490 88.84 940 128.87 
50 115.58 500 89.36 950 130.18 
60 114.57 510 89.96 960 131.52 
70 113.53 520 90.60 970 132.88 
80 112.47 530 91.25 980 134.27 
90 111.39 540 91.90 990 135.69 

100 110.30 550 92.57 1000 137.14 
110 109.19 560 93.24 1010 138.62 
120 108.09 570 93.92 1020 140.14 
130 106.98 580 94.62 1030 141.68 
140 105.89 590 95.32 1040 143.27 
150 104.80 600 96.04 1050 144.88 
160 103.72 610 96.76 1060 146.54 
170 102.66 620 97.50 1070 148.23 
180 101.62 630 98.25 1080 149.96 
190 100.60 640 99.01 1090 151.73 
200 99.61 650 99.78 1100 153.55 
210 98.65 660 100.56 1110 155.41 
220 97.71 670 101.36 1120 157.31 
230 96.81 680 102.16 1130 159.26 
240 95.94 690 102.99 1140 161.26 
250 95.10 700 103.82 1150 163.31 
260 94.30 710 104.67 1160 165.42 
270 93.53 720 105.53 1170 167.58 
280 92.81 730 106.41 1180 169.79 
290 92.12 740 107.30 1190 172.06 
300 91.48 750 108.20 1195 173.22 
310 90.88 760 109.12 1200 173.92 
320 90.32 770 110.06 1210 176.04 
330 89.80 780 111.02 1220 177.99 
340 89.33 790 111.99 1230 179.75 
350 88.91 800 112.97 1240 181.32 
360 88.54 810 113.98 1250 182.69 
370 88.21 820 115.00 1260 183.87 
380 87.94 830 116.04 1270 184.85 
390 87.72 840 117.10 1280 185.65 
400 87.55 850 118.18 1290 186.29 
410 87.44 860 119.28 1300 186.77 
420 87.38 870 120.40 1310 187.12 
430 87.39 880 121.54 1320 187.37 
440 87.46 890 122.71 1330 187.55 

Year: AD; GDP: Gross Domestic Product, billion 1990 international 
Geary-Khamis dollars. 
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Table A6. Economic growth from AD 1340 to 2010 
Year     GDP  Year     GDP  Year     GDP  
1340 187.67 1750 471.71 1970 13,765.94 
1350 187.79 1760 495.02 1971 14,336.49 
1360 187.92 1770 520.73 1972 15,018.42 
1370 188.12 1780 549.22 1973 16,015.15 
1380 188.42 1790 580.95 1974 16,388.00 
1390 188.87 1800 616.51 1975 16,637.92 
1400 189.51 1810 656.64 1976 17,449.53 
1410 190.39 1820 702.24 1977 18,157.09 
1420 191.59 1830 754.52 1978 18,955.43 
1430 193.14 1840 815.03 1979 19,633.16 
1440 195.15 1850 885.85 1980 20,029.99 
1450 197.68 1860 969.81 1981 20,422.61 
1460 200.85 1870 1,070.89 1982 20,648.35 
1470 202.45 1880 1,194.80 1983 21,235.64 
1480 206.68 1890 1,350.09 1984 22,204.27 
1490 211.09 1900 1,550.16 1985 22,969.60 
1500 215.69 1910 1,817.13 1986 23,781.92 
1510 220.50 1920 2,190.37 1987 24,693.77 
1520 225.52 1930 2,747.20 1988 25,753.18 
1530 230.78 1940 3,662.62 1989 26,576.36 
1540 236.29 1945 4,381.03 1990 27,134.08 
1550 242.06 1950 5,335.86 1991 27,494.23 
1560 248.12 1951 5,649.96 1992 28,077.30 
1570 254.50 1952 5,911.28 1993 28,693.57 
1580 261.20 1953 6,208.99 1994 29,697.95 
1590 268.27 1954 6,421.22 1995 30,942.24 
1600 275.73 1955 6,830.52 1996 31,990.50 
1610 283.61 1956 7,151.72 1997 33,241.79 
1620 291.96 1957 7,423.90 1998 33,803.49 
1630 300.80 1958 7,662.29 1999 34,997.33 
1640 310.20 1959 8,013.45 2000 36,688.28 
1650 320.19 1960 8,432.82 2001 37,739.37 
1660 330.85 1961 8,725.32 2002 39,021.27 
1670 342.23 1962 9,136.47 2003 40,809.56 
1680 354.42 1963 9,533.55 2004 42,950.18 
1690 367.51 1964 10,224.89 2005 44,982.59 
1700 381.58 1965 10,760.25 2006 47,340.58 
1710 396.77 1966 11,346.93 2007 49,411.11 
1720 413.20 1967 11,769.15 2008 50,973.94 
1730 431.04 1968 12,416.76 2009 50,762.92 
1740 450.47 1969 13,101.91 2010 53,650.54 

Year: AD; GDP: Gross Domestic Product, billion 1990 international 
Geary-Khamis dollars. From 1950, the data are as listed by Maddison 
(2010) up to 2008. The two values for 2009 and 2010 were calculated 
using the GDP/cap values listed by GGDC (2013) and the population 
data of the US Census Bureau (2017). 
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2. Earlier interpretations of hyperbolic growth 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
istorical economic growth and the growth of population 
were hyperbolic (Nielsen, 2014, 2016a, 2016b, 2016c). 
Hyperbolic growth is described by an exceptionally simple 

mathematical formula. It is just the reciprocal of a linear function. 
Many attempts were made to understand hyperbolic growth or to 
give an alternative mathematical description. These descriptions or 
interpretations tend to be complicated, maybe because hyperbolic 
distributions appear to be complicated. Furthermore, they do not 
explain the mechanism of growth. They also do not give better 
description of data than the description furnished by the simple 
mathematical equation. We shall present here a few examples of 
earlier attempts to explain or to describe hyperbolic distributions.  
 

Technology and the growth of population 
Using correlations between two processes might be tempting in 

order to explain the mechanism of growth but correlations could be 
spurious and misleading. Just because there is a correlation 
between two processes it does not mean that one process influences 
another. It does not mean that there is a cause-effect relation 
between two observed processes. One has to be on guard when 
using such correlations because they can lead easily to loops and to 
the incorrect interpretation of the mechanism of growth.  

The correlation between technology and the growth of human 
population is deceptively misleading and it leads quickly to a 
dubious loop (Korotayev, Malkov, & Khaltourina, 2006a): 
technology increases the carrying capacity, the increased carrying 

H 
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capacity promotes population growth, population growth promotes 
the growth of technology, technology increases the carrying 
capacity, and so on. It is explaining one unknown mechanism by 
another unknown mechanism. It is going in circles and explaining 
nothing. 

Technology might be helpful in supporting the existence of 
people but is it essential? When trying to explain the mechanism of 
growth it is necessary to consider first the most obvious and most 
essential force or forces. Other forces may be added if the essential 
force is insufficient to explain growth.  

It is obvious that the essential force controlling the growth of 
population is the force of procreation. Technology does not 
produce children and it is even not essential to support growth, as 
demonstrated by the fast growth of population in poor countries. 

Even if we briefly agree that technology supports or limits the 
growth of human population, such an ‚explanation‛ ignores the 
obvious and indispensable force of growth of human population, 
the force of procreation. It ignores the abundant evidence that even 
without advanced technology people can still produce children and 
support them.  

This closed-loop explanation is supported by the assertion that 
‚throughout most of human history the world population was 
limited by the technologically determined ceiling of the carrying 
capacity of land‛ (Korotayev, Malkov, & Khaltourina, 2006a, p. 
18. Italics added.). It is a typical claim based of pure imagination, a 
statement that has to be accepted by faith. How can we possibly 
prove that over thousands of years and all over the world, the 
growth of human population was so finely tuned to the ‚the 
technologically determined ceiling of the carrying capacity of 
land‛?  

When this statement was published and when the associated 
closed-loop explanation was proposed it was already well known 
that the growth of human population was hyperbolic, at least 
during the AD era (Kapitza,1992, 1996, 2006; Kremer, 1993; 
Podlazov, 2002; Shklovskii, 1962, 2002; von Foerster, Mora, & 
Amiot, 1960; von Hoerner, 1975). Evidence-based indication is 
that hyperbolic growth was in general unconstrained and 
surprisingly robust over a long time. This type of growth 
contradicts the concept of the limiting effects of the ceiling of the 
carrying capacity. This ceiling appears to have been always much 
higher than required for supporting growth, the conclusion being in 
agreement with the study of the ecological capacity and ecological 
footprints showing that only recently we have crossed the 
ecological limit of our planet (Ewing, et al. 2010). 
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To accept this closed-loop explanation we would have to 
accept, without a proof, that each component in this loop was not 
only finely tuned but also that they were all for some mysterious 
and unexplained reason increasing hyperbolically: the population 
was increasing hyperbolically, the technology was increasing 
hyperbolically, the carrying capacity was increasing hyperbolically 
and all of them were so finely tuned as to increase in unison, in 
such perfect harmony and so close to each other. The size of the 
population would have to be all the time close to the limiting 
ceiling of the carrying capacity, which would be so mysteriously 
increasing.  

The proposed closed-loop explanation breaks also down already 
in the first step. What if the carrying capacity was already so large 
that the assumed contribution from technology was 
inconsequential? The size of the population in the past was small 
over a long time. It is hard to accept that our planet was incapable 
to support the increasing population.  

With the exception of just two demographic transitions in the 
past 12,000 years (Nielsen, 2016a), the growth of human 
population was increasing without any major disturbance. With the 
small number of people and with the huge resources of our planet 
we can reasonably expect that the carrying capacity was much 
higher than the size of human population.  

It would be unrealistic and unconvincing to assume that the 
growth of human population over such a long time was so 
precisely adjusted to the carrying capacity. It would be unrealistic 
to expect that this fine tuning was done so precisely by 
technological development. To make such a claim we would first 
have to prove that the growth of human population was always 
limited by the carrying capacity of our planet but we have no such 
proof and probably we shall never have. Any theory, which 
attempts to explain the mechanism of growth of human population 
by fine tuning of the size of population to the carrying capacity by 
technology, economic growth or by any other means is either 
unscientific (because it is based on untestable assumptions) or at 
least strongly questionable.  

We would have to have some incredibly advanced technology 
to measure the carrying capacity and to adjust the growth of human 
population so precisely to its ‚ceiling.‛ But even then, we could 
hardly expect such a regular hyperbolic growth.  By using this 
advanced technology, we would also have to control precisely 
three interacting processes: technological development, the 
increase in the carrying capacity and the growth of human 
population. We would have to make sure that these three processes 
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are perfectly synchronised and that they follow the closely coupled 
hyperbolic trajectories.  

To justify the closed-loop process we would have to explain it 
without assuming that it was controlled by any advanced 
technology. Without such explanation, the mechanism of the 
proposed closed-loop remains unexplained and consequently, it 
does not explain the mechanism of the growth of human 
population.    

We can also have other questions about this first step in the 
postulated closed loop. What is the carrying capacity of our planet? 
What was the carrying capacity of our planet over the past 12,000 
years or longer? What was the contribution of technology to the 
carrying capacity? Even if we assume that technology increases the 
carrying capacity, is this assumed increase so essential to support 
the growth of human population? It is well known that people can 
survive on very little and that even then they can still procreate and 
support children. All they need is basic food, body cover and 
shelter.  

How much damage is caused by technology? How is the 
technology reducing the carrying capacity? Can we ignore, for 
instance, that carbon footprint accounts for about 50% of our total 
ecological footprint? (Ewing, et al. 2010). Can we ignore the 
pollution of not only the atmosphere but also of the land and 
water? Can we ignore climate change, the ever-increasing weather-
related economic losses, the decreasing carrying capacity of people 
living on islands, the increasing deforestation, the continuing 
human-induced extinction of species, the continuing loss of arable 
land, the overuse of pesticides, herbicides, artificial fertilisers and 
other agricultural chemicals? Can we ignore the ever-increasing 
urban population and their increasing dependence on food supply, 
which comes from the decreasing land resources? Can we ignore 
how the huge and the well-stocked arsenal of weapons is 
relentlessly used to destroy the carrying capacity? Can we ignore 
the never-decreasing stream of displaced population? 

If we want to claim that technology increases the carrying 
capacity, we should also consider how this carrying capacity is 
decreased by technology. But the essential point is to show that 
technology was indeed playing the crucial role in shaping the 
growth of population, that this assumed force of growth has to be 
added to the essential and indispensable force of procreation, that 
without technology population would not have been increasing or 
that it would not have been increasing hyperbolically.  

Another problem with linking technological development with 
the growth of human population is the misinterpretation of the 
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fundamental mechanism of technological development. 
Technological growth is not prompted by the sheer number of 
people but by concepts, ideas and solutions. This is the driving 
force of technological development. People are just carriers of 
these concepts, ideas and solutions, or more precisely, carriers of 
the genetic ability to generate concepts, ideas and solutions.  

Is the technological development dependent on the number of 
people? While it is true that with a larger number of people we can 
expect a greater number of ideas and solution, it is also true that the 
growth of human population is now slowing down. Does it mean 
that technological development is also slowing down because of 
the slowing down growth of human population? If the growth of 
human population is going to reach a maximum and stop growing, 
will the technology also reach a certain maximum and stop 
growing?  Will people stop thinking and inventing?  

The growth of technology is not determined by the number of 
people but by the number of creative ideas, inventions and 
solutions, which do not appear to be directly proportional to the 
number of people. Consequently, even if the size of population is 
going to be constant, people will not stop being intellectually 
active.  

The correlation between technology and the growth of human 
population was investigated by Kremer (1963). He claims that 
there is a close correlation between the growth of population and 
technological development, which is hardly surprising. However, 
by observing a correlation between two processes we can only tell 
that there is a correlation.  The correlation alone does not explain 
the mechanism of growth of any of the correlated processes. 
Correlations can be strongly misleading and they have to be 
handled with care.  

Kremer claims that the growth rate of human population during 
the AD era was approximately proportional to the size of human 
population indicating that the growth was hyperbolic but he did 
not explain why it was hyperbolic. He suggests the correlation 
between the growth of human population and the growth of 
technology but this correlation does not explain the mechanism of 
growth of any of them. It does not explain why these two 
correlated processes are hyperbolic. It is like with the finely-tuned 
closed-loop mechanism proposed by Korotayev, Malkov & 
Khaltourina, (2006a): one process is explained by another without 
explaining any of them. The growth of human population is 
hyperbolic because the growth of technology is hyperbolic, and 
the growth of technology is hyperbolic because the growth of 
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population is hyperbolic. It is also explaining one unknown 
mechanism by another unknown mechanism and going in circles. 

The primary, if not the only, force driving the growth of 
population is the force of procreation, which in its simplest 
representation is the biologically controlled sex drive and 
biologically controlled mortality. Until recently, children were not 
produced by technology. Mortality was also not controlled by 
technology. Maybe technology could be claimed to give a better 
chance of survival but it is definitely not the primary force of 
growth. Likewise, the primary force driving technological 
development can be identified as concepts and ideas created by 
people, combined with the efficiency of sharing information.  

The primary force of the growth of population is represented by 
the biological processes controlling birth and death. The primary 
force controlling the growth of technology is represented by 
concepts, ideas and generally by creative activities of human 
population. Biological process controlling birth and death apply 
not only to humans but also to other species. The force of creative 
thinking applies specifically only to humans. There might be some 
examples of creative thinking in other species, particularly in 
primates, but they are on such a low level that they do not initiate 
some new lines of technological development. 

If the force responsible for the growth of technology were 
determined by the sheer number of people, i.e. by the number of 
members of this particular species, there would be no reason for 
excluding other species from this process. They should be also 
expected to develop technology but they do not. The growth of 
technology and the growth of population are controlled by 
different forces of growth. Their fundamental mechanisms of 
growth are distinctly different. 

There is a close correlation between the growth of technology 
and the growth of human population only because creative 
concepts come from humans. Explaining the growth of population 
by technology and technology by the growth of population is 
going in circles and explaining nothing.  

 
Convoluted construction 

Hyperbolic growth is described by a simple formula: 
 

1
( )S t

C kt



,       (1) 
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where ( )S t is the size of the growing entity, such as population 
or the Gross Domestic Product (GDP), C is the constant of 
integration, k is a positive constant and t is time.  

This expression is a solution of a very simple differential 
equation: 

 
1 ( )

( )
( )

dS t
kS t

S t dt
 .      (2) 

 
Normally, the next step would be to explain why the growth is 

hyperbolic. To this end, we would have to start with some simple 
and easily acceptable assumptions and derive the hyperbolic 
formula based on these assumptions. Maybe we could also start 
with acceptable assumptions and derive and alternative formula, 
which would give a better description of data. However, if we 
derived a more complicated formula, which would not give a better 
description of data we could then decide that we were on the wrong 
track and we would have to try another approach.  

In contrast, in the demographic and economic research there 
appears to be a tendency to construct mathematical formulae and to 
try to make them as complicated as possible. Here is one such 
example (Johansen & Sornette, 2001).  

Start with the logistic equation of growth 
 

 )(
)(

)(

1
tSKb

dt

tdS

tS
 .     (3) 

 
This is already a questionable starting point because we know 

that population and the GDP do not grow logistically but 
hyperbolically. Even now, they do not yet level off (Nielsen, 
2016d) to suggest a conversion to a logistic-type of growth. 

Assume that the limit to growth K depends on time. 
 

 )()(
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For no apparent reason, delete )(tS from the right-hand side of 

the eqn (4).  
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Again, for no apparently good reason, assume that 
 

 )()( tStK  ,      (6) 
 
where 1 . 
 
Under this assumption, eqn (6) is now changed to  
 

 )(
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1
tSb

dt

tdS

tS
 .     (7) 

 
This equation can be presented as  
 

  1
)(

)( 



tSb

dt

tdS
.      (8) 

 

We can solve it by substitution 1S Z  . The solution is 
 

1
S c bt



    ,      (9) 

 
where c is the constant of integration. So now we have 
 

   zc

z
ttbtS  )( ,               (10) 

 

where /1z and /ct c b  is the time of singularity when 

)(tS escapes to infinity.  

Replace ( )zb  by an arbitrary and adjustable parameter B and 
add another arbitrary and adjustable parameter A to construct 

 

 zc ttBAtS )( .               (11) 

 
Assume that the parameter z is a complex number 
 

)(  iz                  (12) 
 
So now we have 
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   i

c ttBAtS


)( .                         (13) 

 
Find the real component of  i

c tt  )( . 

This is an easy exercise that can be completed using two well-
known formulae: 

 
xyy ex ln                  (14) 

 
and  
 

 sincos iei  .               (15) 
 
The answer is 
 

 )ln(cos)()Re( tttttt cc

i

c    .            (16) 

 
Assuming that both A and B are real, the formula for ( )S t can 

be now expressed as 
 

 i

c ttBAtS  )Re()(Re ,             (17) 

 
which with the help of the eqn (16) gives 
 

 )ln(cos)()(Re ttttBAtS cc   .            (18) 

 
Use the eqn (13) again but now delete i . 
 

 ttBAtS c )( .               (19) 

 
Return to the eqn (16) and multiply the right-hand side of this 

equation by a constant D. 
 

 )ln(cos)()Re( ttttDtt cc

i

c    .            (20) 

 
Add a phase shift in the eqn (20). 
 

    )ln(cos)()Re( ttttDtt cc

i

c
.         (21) 
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Return to the equation (19) and add to it the right-hand side of 
the eqn (21). We have now constructed the equation published by 
Johansen & Sornette (2001). 

 

   
 )ln(cos)()( ttttDttBAtS ccc

   (22) 

 
This equation contains seven adjustable parameters but we do 

not know how they are supposed to be linked with the mechanism 
of growth. We know how we constructed (not derived) this 
complicated and impressive formula but we do not know why we 
have it and indeed why we should be interested in using it except 
perhaps to draw a line through data points, which we could do 
equally successfully using pen and paper and obtain equally 
meaningless result. 

It is always good to look for mathematical description of data 
because it could help in understanding the nature of the observed 
phenomenon. However, if complicated description is not better 
than description given by a simple mathematical formula there is 
obviously no advantage in using the complicated description.  

Hyperbolic growth described by the eqn (1) gives a satisfactory 
description of the growth of population and of the economic 
growth (Nielsen, 2014, 2016a, 2016b, 2016c). This is a simple 
formula, which could be expected to have a simple explanation. 
But now, we have a significantly more complicated formula. So, 
rather than making our task of explaining the mechanism of growth 
easier we have made it even more complicated.  

In Figure 1, the distribution generated by the complicated eqn 
(22) is compared with the first-order hyperbolic distribution 
described by the eqn (1) and with data. As explained elsewhere 
(Nielsen, 2016a), fitting data around AD 1 by using hyperbolic 
distribution is pointless because around that time there was a 
transition from a fast to a slow hyperbolic trajectory. However, if 
we replace the complicated formula of Johansen and Sornette by a 
significantly simpler reciprocal of the second order polynomial 

 
12

210 )()(  tataatS                (23) 

 
we can generate a virtually identical distribution. There is no 

clear advantage in using the complicated formula of Johansen and 
Sornette.  Simple description using the first-order hyperbolic 
distribution given by the eqn (1) gives acceptable representation of 
data but we can also replicate the complicated seven-parameter 
calculations but using just three parameters. 
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Figure 1. Growth of the world population calculated using the 

Johansen & Sornette’s (2001) constructed formula (22) is compared with 
the calculations based on significantly simpler formulae given by the eqns 
(1) and (24). Population data come from numerous sources compiled by 
Manning (2008) and by the US Census Bureau (2016). The parameters 
for the distribution of Johansen and Sornette given by the eqn (22) are: 

A≈0, B≈1624, D ≈−127,  z≈−1:4, tc≈2056;  ≈6:3 and  ≈5.1. Parameters 

for the hyperbolic distribution given by the eqn (1) are: 07.875 10C  

and 33.834 10k   . Parameters for the reciprocal second-order 

polynomial distribution given by the eqn (24) are: 0

0 3.367 10a   , 
3

1 1.172 10a   and 6

2 1.382 10a    . 

 
The aim of constructing this complicated formula appears to be 

misplaced because even Johansen and Sornette used a significantly 
simpler formula in their analysis of a wide range of data presented 
in their Figs 9-32. The formula they used was 

 
z

c ttatS )()(  .                 (24) 

 
However, even in this simplified form it is already 

unnecessarily more complicated than the eqn (1) because ( )S t is 
no longer represented by the reciprocal of a linear function but by 
the time difference taken to the power of z. This expression is 
linear only if 1z  . For integer values of 1z  it describes higher-
order polynomials. For integers 1z   it describes reciprocals of 
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higher order polynomials. However, z can be also any other 
number greater or smaller than zero. 

 
The homeostatic simulation model 

In conformity with the generally accepted established 
knowledge in demography and in economic research (Nielsen, 
2016d), Artzrouni & Komlos (1985) imagined that the growth of 
population can be divided into two distinctly different regimes: 
Malthusian stagnation and explosion. These regimes of growth are 
assumed by be controlled by two distinctly different mechanisms 
of growth. They assumed incorrectly that the growth before the 
Industrial Revolution was controlled by random forces such as 
wars, famines and diseases, the mechanism causing presumably 
stagnation in the growth of population. They also assume, 
incorrectly, that the growth after around the Industrial Revolution 
was exponential. 

They should have known that their assumptions were unrealistic 
and incorrect because many years earlier it has been shown that the 
growth of population was hyperbolic (von Foerster, Mora, & 
Amiot, 1960; von Hoerner, 1975). Hyperbolic growth cannot be 
divided into two regimes of growth, slow and fast. For this type of 
growth, Malthusian regime does not exist and the apparent 
explosion is just the natural continuation of hyperbolic growth. 
There was no stagnation in the growth of human population and in 
the economic growth and there were no takeoffs leading to 
distinctly different explosive growth (Nielsen, 2014, 2015, 2016a, 
2016b, 2016c, 2016e, 2016f, 2016g, 2016h).  

Their work is important because, unknown to them, they have 
demonstrated that the established knowledge is contradicted by 
science. They did not realise that they made an important discovery 
because typically for the research carried out within the constraints 
of the established knowledge they did not compare results of their 
research with data.   

To generate the growth of population before the Industrial 
Revolution, Artzrouni and Komlos carried out Monte Carlo 
simulations of the supposed Malthusian regime of stagnation. To 
describe the supposed population explosion, they simply assumed 
exponential growth after the Industrial Revolution. In their model, 
the growth of population is given by  
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For the constant r, this equation would describe exponential 
growth. However, in their calculations, the growth rate r is either 
constant (after the Industrial Revolution) or time-dependent (before 
the Industrial Revolution). 

So, more explicitly, they consider two stages of growth. Before 
the Industrial Revolution the growth is given by: 
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
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whereas after the Industrial Revolution it is given by 
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where er is a certain constant ‚escape rate‛ (Artzrouni & 

Komlos, 1985, p 27), escape from nowhere because there was no 
escape, or more accurately there was nothing to escape from, 
because the mythical Malthusian trap did not exist. The growth of 
population was monotonically hyperbolic, and the Industrial 
Revolution had no impact on changing the growth trajectory. 
However, according to the established but erroneous knowledge, 
there was an escape.  

Fluctuations in the growth rate )(tr  before the Industrial 

Revolution are determined by )(te  described as ‚a non negative 
random variable generated by a Monte Carlo type of simulation‛ 
(Artzrouni & Komlos, 1985, p. 27). For no apparent reason, this 
variable is defined by the following equation: 

 
  5)(15.01)()(1.0)(  tyetUtvte ,              (28) 

 
where )(tv  is a random number drawn from a normal 

distribution with the mean 0 and variance 1, )(ty is the number of 
decades the population was in the assumed Malthusian crisis and 

)(tU  is defined (again for no clear reason) as  
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The population is divided into two sectors: the subsistence 
sector (‚rural‛) and the capital producing sector (‚urban‛). In the 
eqn (29), )(tP represents the per capita output (production) of the 
subsistence sector. If the per capita output is below a certain 
threshold defined by TP , i.e. if TPtP )( , the population is 
assumed to be in the Malthusian crisis and cannot grow. If 

TPtP )(  , the population is assumed to be out of crisis and can 
increase.  

The per capita output in the subsistence sector is defined as 
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
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 ,               (30) 

 
where  2C , 1 and 2 are positive constants with 

121   , )(tK is the capital stock and )(tSR is the 
population in the subsistence (‚rural‛) sector.  

The total output in the subsistence sector is given by 
 

21 )]([)]([)( 2


tStKCtQ RR  .               (31) 

 
Likewise, the total production in the capital producing sector 

(‚urban‛) is given by 
 

21 )]([)]([)( 1


tStKCtQ UU  ,               (32) 

 

where  1C , 1 and 2 are positive constants with 

121   . 
The total population is then given by 
 

)()()( tStStS UR  .               (33) 

 
Returning to the eqn (28) we should notice that the function 
)(tU defining the time-dependent parameter )(te , which plays the 

essential role in the Monte Carlo simulations, depends on )(tP , 

which in turn depends on the capital stock )(tK . The growth of the 
capital stock is described as 

 



R.W. Nielsen, Evidence-based Unified Growth Theory… Vol.3                         KSP Books 

47 

)()(
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where )(t is defined as 
 

tet 05756.02610778.101.0)(  .              (35) 
 
The process of Monte Carlo simulations is well described by 

Artzrouni & Komlos (1985). These simulations produced most 
interesting results. Designed to demonstrate the existence of 
Malthusian regime of stagnation, the model shows that the regime 
of Malthusian stagnation did not exist. The assumed mechanism of 
stagnation does not produce stagnation but a steadily-increasing 
growth. Furthermore, the growth generated by the model during 
this imaginary regime of stagnation does not fit the data (see 
Figure 2).  

 
Figure 2. The established knowledge in demography is contradicted 

by science. Simulations of the mechanism of Malthusian stagnation 
carried out by Artzrouni & Komlos (1985) do not produce stagnation but 
a steadily increasing exponential growth. They also do not fit date. These 

calculations are compared with hyperbolic distributions (Nielsen, 
2016a). The data represent the average values of the size of population 

calculated using the compilations of Manning (2008) and of the US 
Census Bureau (2016). 

 
Parameters describing hyperbolic distributions shown in Figure 

2 and defined in the eqn (1) are: 02.282 10C    and 
22.210 10k   for the BC era and 07.061 10C   and 
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33.398 10k   . The data come from a variety of sources 
compiled by Manning (2008) and the US Census Bureau (2016). 

The model of Artzrouni & Komlos’s (1985), designed to 
reproduce the ‚well documented fluctuations experienced by the 
world’s population throughout history‛ (Artzrouni & Komlos, 
1985, p. 24), produced instead a steadily increasing growth along 
exponential trajectory. (In the semilogarithmic display, exponential 
growth is represented by an increasing straight line.) Furthermore, 
their model calculations do not fit the data. Their results show 
clearly that the model of Malthusian stagnation does not work. The 
mechanism of Malthusian stagnation does not describe the growth 
of population. The model based on the assumption of the 
mechanism of Malthusian stagnation did not generate the required 
fluctuations in the growth of population let alone fluctuations that 
‚were, to a large extend, brought about by randomly determined 
demographic crises (wars, famines, epidemics, etc.)‛ (Artzrouni & 
Komlos, 1985, p. 24).  

Thus, if Artzrouni and Komlos took the final step normally 
expected in scientific investigations, if they compared theory with 
data, even with the data used by von Foerster, Mora & Amiot 
(1960), they would have made an important discovery that the 
fundamental concepts of the established knowledge in demography 
are incorrect. They would then be able to suggest new lines of 
research. 

It is essential to notice that even though Monte Carlo 
simulations based on the assumption of the mechanism of 
Malthusian stagnation produced exponential growth it would be 
incorrect to claim that the mechanism of Malthusian stagnation 
generates exponential growth. Equation (26) makes it clear that 
Artzrouni & Komlos (1985) assumed exponential growth. They 
assumed that Monte Carlo calculations were fluctuating around the 
growth rate describing exponential growth because eqn (26) 
describes modulated exponential growth. If we assume exponential 
growth it is hardly surprising that we get exponential growth. 
Fluctuations in the growth rate are not readily reflected as 
fluctuations of the growth of population or the GDP (Nielsen, 
2016i, 2016k). 

 
Lagerlöf’s model of growth 

Lagerlöf’s model of growth (2003a, 2003b) belongs to the so-
called OLG (overlapping generations) models (Aliprantis, Brown 
& Burkinshaw, 1990) used for instance by Becker, Murphy & 
Tamura (1990) and by Galor (2005a, 2011) to look at the growth of 
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the population from the economic perspective. The central idea of 
this approach is to try to explain the growth of population by 
considering human capital defined as ‚embodied knowledge and 
skills‛ (Becker, Murphy & Tamura, 1990, p. S13). The growth is 
on the favourable rates of return. 

When human capital is abundant, rates of return on human 
capital investments are high relative to return on children, 
whereas when human capital is scarce, rates of return on 
human capital are low relative to those on children. As a 
result, societies with limited human capital choose large 
families and invest little in each member; those with 
abundant human capital do the opposite (Becker, Murphy 
& Tamura, 1990, p. S35). 

It is a strong assumption, which is hard to accept. One would 
have to have a strong proof that this assumption is correct but we 
do not have such a proof. 

It is interesting that neither Becker, Murphy & Tamura (1990), 
nor Galor (2005a, 2011), nor Lagerlöf (2003b) tried to compare 
their model predictions with population data. Lagerlöf (2003b) 
came close to testing his model against data when he generated 
growth rates in his Monte Carlo simulations but we shall show that 
his model is in disagreement with data he was referring to in his 
publication. 

Lagerlöf’s model is an excellent example of convoluted models 
characterised by the abundance of parameters but models, which 
neither describe data nor explain the mechanism of growth. This 
model was also designed to reproduce the epoch of stagnation and 
the supposed transition from stagnation to growth at the time of the 
Industrial Revolution, all as specified by the prescribed instructions 
of the established knowledge in demography and in the economic 
research. Like Artzrouni & Komlos (1985), Lagerlöf was also on 
the verge of making an important discovery that the established 
knowledge in demography and in economic research is 
contradicted by science. Like Artzrouni & Komlos (1985), he was 
on the verge of proving that the epoch of Malthusian stagnation did 
not exist and that there was no transition from stagnation to 
growth. Like Artzrouni and Komlos (1985), he was on the verge of 
showing that simulations of Malthusian stagnation do not produce 
stagnation, that they do not fit data and that they do not explain the 
mechanism of growth. He missed making this important discovery 
because he did not take the final step normally expected in 
scientific investigations – he did not compare theory with data. 
Parameters and definitions used in Lagerlöf’s model are listed in 
Table 1.  
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Table 1. Parameters and definitions used in Lagerlöf’s theory (Lagerlöf, 
2003a, 2003b) 

Parameter Description 
t Time interval or ‚period t‛ assumed to be 25 years, i.e. one generation 

tH  Human capital or ‚a component resulting from parental investment‛ 
(Lagerlöf, 2003b, p. 426) called also ‚human capital stock‛ (Lagerlöf, 
2003a, p. 760) 

L  The ‚units of skills‛ (Lagerlöf, 2003b, p. 426) endowed by nature to 
‚every agent‛ (person) 

tHL   The ‚productivity of a unit of time‛ (Lagerlöf, 2003b, p. 426) 

v ‚a fixed time cost of rearing one child‛ i.e. ‚the time required to nurse the 
child just enough to keep her alive‛ (Lagerlöf, 2003a, p. 759) 

v  Assuming 0 1  , this product ‚measures the direct inheritance of 

human capital from one generation to the next‛ reflecting the assumption 
that less than 100% of the time invested in rearing (nursing) a child is 
converted into human capital. 

th  
The time invested in the education of each child 

tl  
The ‚time input in the consumption good sector‛ (Lagerlöf, 2003a, p. 
759) i.e. time spent on production or work 

t  
The ‚mortality shocks‛ (Lagerlöf, 2003b, p. 426) ‚which can be 
interpreted as epidemics‛ (Lagerlöf, 2003a, p. 760), the function assumed 
to be described by the probability density function of a log-normal 
distribution. 

tP  
‚the (adult) population size‛ called also ‚population density‛ in the 
generation t (Lagerlöf, 2003a, p. 760). The fundamental assumption of 
OLG models is that people live only for two generations. All adults in the 
generation t are replaced by the children born during the generation t. 
This new generation will be completely replaced by the next generation. 

)( tPA  The productivity parameter, which enters into the equation of the time-
dependence of human capital 

tB  ‚the number of born children (or births)‛ (Lagerlöf, 2003a, p. 759). It is 
the average number of children per capita of adult population born in the 
generation t, i.e. over the entire 25 years. 

tT  The ‚survival rate‛ (Lagerlöf, 2003a, p. 760). It is the average fraction of 
the number of individuals born during the 25 years of the generation t, 
who survive to the next generation 1t . 

tt Bhv )(   The total time invested in children per capita of the adult population 
calculated over the entire time of one generation, i.e. over the total time 
of 25 years 

tY  The output of the consumption (production) of goods 

tC  The ‚adult consumption‛ (production) (Lagerlöf, 2003b, p. 426) 

  A parameter ( 0 ) used in the utility function 

 
Assuming that each person (agent) is endowed with a unit of 

time, the time budget for each agent is given by 
 

ttt Bhvl )(1                  (36) 

 
At any given time, each person (agent) is assumed either to 

work or to spend time with children. 
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Assuming a single economy (or non-interacting economies) and 
that children consume (produce) nothing, the output of the 
consumption (production) of goods is given by 

 

tttt CHLlY  )(                (37) 

 
It is simply the productivity per unit of time multiplied by the 

time spent at work.  
The survival rate is given by 
 

tttt

t
t

SHS

H
T

/

1





               (38) 

 

In the absence of mortality shocks ( 0t ), the survival rate 

1tT . 

 
The production of human capital is given by 
 

  )()(1 tttt hvHLPAH                 (39) 

 
Human capital increases in proportion to the productivity per 

unit of time multiplied by the time spent with each child, with the 
part of this time corrected for the unproductive fraction of time 
when nursing a child. By including the parameter 10   it is 
assumed that education is more profitable for the increasing of 
human capital than nursing. 

Each agent is assumed to maximise a utility function describing 
personal preferences and is given by 

 

)ln()ln()ln( 1 ttttt HLTBCU              (40) 

 
The first term of the utility function measures the utility (the 

preference) of consumption (production), the second measures the 

utility of surviving children given by ttTB  and the third the utility 

of human capital of the offspring.  
By maximising the utility function, we get the following 

expression for the optimal (preferred) number of births 
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t

t
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





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
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1

1 


               (41) 

 
The number of born children depends entirely on the time 

invested in each child corrected by a factor dependent on the 
parameter used in the utility function. The larger the invested time, 
the smaller is the number of children, or vice versa. 

The annual crude birth and death rates (
trB ,

and
trD ,

, 

respectively) are calculated using the following expressions: 
 

 11000 25/1

,  ttr BB                (42) 

 25/1

, 11000 ttr TD                 (43) 

 
Calculations become significantly more complicated if 

interacting countries are included. Thus, for instance, assuming 
that that a demographic shock in one country is also reflected in 
other countries, the survival rate can be expressed as 
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 (44) 

 
 
If we look back at eqns (38), (42) and (43) we can see that when 

0t , then 1tT  and the death rate 0, trD , which also 

means that if mortality shocks are low, i.e. if 0t , the death 

rate is also approximately zero. If we assume that the time spent 
with each child remains approximately the same over time, or 
equivalently that the number of born children remains 
approximately the same, a dramatic decrease in mortality shocks 
should generate a prominent population explosion.  

This mechanism is the essence of the Demographic Transition 
Theory, which claims that towards the end of the assumed first 
stage of human history, interpreted as the epoch of Malthusian 
stagnation, the death rate started to fall while the birth rate 
remained approximately the same, the process creating presumably 
population explosion, the explosion which in fact never happened. 
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This is also the essence of the three regimes of growth postulated 
by Galor & Weil (1999, 2000) but contradicted by the analysis of 
data (Nielsen, 2016f).  

The mechanism of Malthusian stagnation followed by explosion 
is carefully incorporated in the Lagerlöf’s model of growth. In 

particular, regarding the mortality shock function t , Lagerlöf 

explains: 
To understand the mechanisms driving the results in the 
calibration later, it is useful to first think of economies 

where t is constant over time: Either high or low. To 

replicate the Three Regimes of Galor & Weil (1999, 
2000), discussed in the introduction, we shall rig the model 
so that a high-ω economy converges toward a locally stable 
(Malthusian) steady state, whereas a low-ω economy 
converges to a balanced growth path (Lagerlöf, 2003a, 
763). 

The three regimes Lagerlöf is writing about are the assumed 
Malthusian regime of stagnation, which was supposed to last for 
thousands of years but which never existed; the post-Malthusian 
regime marked presumably by the rapid increase of population and 
economy; and the modern growth regime or sustained growth 
regime, which presumably follows a little later but which also 
represents an imaginary stage of growth. We have already 
demonstrated that these three regimes of growth did not exist 
(Nielsen, 2016f). 

Lagerlöf’s theory is based on the scientifically contradicted 
fantasy and if he carried his research properly, if he compared his 
theory with empirical evidence, he would have soon discovered 
that he was guided by fiction. His hard and convoluted work was 
unnecessary because it has been known for a long time that the 
growth of population was hyperbolic (Kapitza,1992, 1996, 2006; 
Kremer, 1993; Podlazov, 2002; Shklovskii, 1962, 2002; von 
Foerster, Mora, & Amiot, 1960; von Hoerner, 1975). Hyperbolic 
growth can be described by an exceptionally simple mathematical 
formula, which is just the reciprocal of a linear distribution. This 
type of growth is in contradiction of the concepts of stagnation and 
explosion. 

Using his model and Monte Carlo simulations, Lagerlöf 
generated growth rate for the growth of population in England, 
France and Sweden (Lagerlöf, 2003b). His model produced minor 
fluctuations in the growth rate, which were interpreted by Lagerlöf 
as the proof of the existence of the regime of Malthusian 
stagnation. That was a serious mistake because even large 



R.W. Nielsen, Evidence-based Unified Growth Theory… Vol.3                         KSP Books 

54 

fluctuations in the growth rate are not readily reflected in the 
growth of population (Nielsen, 2016i, 2016j), and we do not even 
have to carry out laborious calculations to see that fluctuations in 
the growth rate are not reflected as similar fluctuations in the 
growth of population. Data for Sweden are well known (Statistics 
Sweden, 1999). They are often used in defence of the Demographic 
Transition Theory without even realising that the they are in its 
contradiction. There, in the same document, for everyone to see, 
we have graphs showing fluctuating birth and death rates, and 
fluctuating annual population increase but also we have a graph of 
population growth with no signs of fluctuations. The usual practice 
of showing fluctuations in birth and death rates or in the growth 
rate and claiming that we have a proof of the existence of 
Malthusian stagnation is unjustified. These fluctuations are not 
reflected in the growth of population and consequently they have 
no impact on the mechanism of growth. They are, in this respect, 
irrelevant.   

Figure 3 shows an example Lagerlöf’s results for France. His 
model-generated growth of population was calculated using the 
numerical integration of the following differential equation: 

 
1 ( )

( )
( )

L

dS t
R t

S t dt
 ,                 (45)  

 

where ( )LR t is the Lagerlöf’s, model-generated and fluctuating 

growth rate, precisely as published in his paper (Lagerlöf, 2003b).  
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Figure 3. The established knowledge in demography is contradicted 

by science. Simulations of Malthusian stagnation carried out by Lagerlöf 
(2003b) do not produce stagnation but a steadily increasing growth of 

population. Furthermore, his model calculations do not fit data 
(Maddison, 2010). Model-calculated distribution follows exponential 

trajectory because the growth rate was oscillating around a constant value. 
The claimed population explosion is just a small deviation from the 

exponential trajectory at its end. The growth of population in France was 
hyperbolic. 

 
In Figure 3, Lagerlöf’s model-generated distribution is 

compared with the exponential distribution and with data. We also 
show the hyperbolic distribution fitting the data (Maddison, 2010). 
These data were not available to Lagerlöf but he had access to 
similar data (Maddison, 2001) published before the publication of 
his work.  

Parameters describing hyperbolic distribution are:
12.085 10C   and 59.635 10k   [see eqn (1)]. The 

exponential distribution, which is so closely followed by 
Lagerlöf’s model-generated results, is described by the following 
equation: 

 
'( ) rtS t C e .                  (46) 

 

Its parameters are ' 03.100 10C    and 49.780 10r   . 
The tiny, model-generated fluctuations in the growth rate 

presented in Lagerlöf’s publication (Lagerlöf, 2003b) could not 
have possibly generated oscillations in the growth of population. 
Even large fluctuations are not readily reflected in distributions 
describing growth, such as growth of population or the GDP 
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(Nielsen, 2016i, 2016j). Lagerlöf could have seen it clearly if he 
looked at the data for Sweden (Statistics Sweden, 1999). He could 
have also known it if he studied the excellent data for England 
(Wrigley & Schofield, 1981). These results show clearly, even 
without carrying out any calculations, that even large fluctuations 
in birth and death rates and in the corresponding growth rate have 
no tangible effect on the growth of population and consequently 
that they have no effect on shaping the mechanism of growth. 
These data are clearly contradicting the established knowledge in 
demography but they are systematically ignored. The established 
knowledge in demography is also contradicted by results published 
over 50 years ago (von Foerster, Mora, & Amiot, 1960) but they 
are also systematically ignored. 

The important contribution of Lagerlöf’s Monte Carlo 
simulations is to show that the mechanism of Malthusian 
stagnation and population explosion does not work. Such a 
mechanism fails to produce the desired effects of stagnation and 
explosion and it fails to fit the data.  

Results of Lagerlöf show that his model-generated distribution 
was exponential and that his claimed population explosion is just a 
minor deviation from the exponential trajectory. However, one 
might wonder why model-generated results follow exponential 
trajectory. Does it mean that the process of Malthusian stagnation 
generates exponential growth? No, it does not. Results depend on 
our assumptions about the way birth and death rates are 
fluctuating. 

Lagerlöf assumed that crude birth rate was a non-zero constant 
and that crude death rate fluctuated around a non-zero constant 
value. Naturally, therefore, his growth rate also fluctuated around a 
non-zero constant, which in turn generated exponential growth. If 
Lagerlöf assumed that birth rate was zero and that the death rate 
fluctuated also around zero, he would have produced growth rate 
fluctuating around zero and thus he would have produced a 
constant size of population in his Monte Carlo calculations but he 
would still have not produced the required fluctuations in the size 
of population and his results would have been in a clear 
disagreement with data. The same applies to the calculations of 
Artzrouni & Komlos (1985). If they did not assume the modulated 
exponential growth during the postulated epoch of Malthusian 
stagnation [see the eqn (26)], they would have also produced a 
constant population without the so-called Malthusian oscillations.  

If Lagerlöf took the final step and compared his model-
generated distributions with data (Maddison, 2001), if he consulted 
the available to him literature (Statistics Sweden, 1999; Wrigley & 
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Schofield, 1981) he would have made an important discovery that 
the concept of Malthusian stagnation followed by explosion is 
incorrect, that it is contradicted by data and even by his own 
model. He could have then used his expertise to suggest new 
directions for the demographic and economic research.  

The same applies to Galor. He uses Maddison’s data but 
surprisingly he never attempts to analyse them. He prefers to 
distort them (Galor, 2005a, 2005b, 2007, 2008a, 2008b, 2008c, 
2010, 2011, 2012a, 2012b, 2012c; Galor & Moav, 2002) to support 
the preconceived but erroneous ideas. He knows mathematics and 
he should be familiar with hyperbolic distributions. If he analysed 
data, the same data that he used in his publications, he would have 
soon discovered that the established knowledge in demography and 
in economic research is scientifically unsupported. He could have 
then also used his expertise to suggest new lines of research. These 
examples show how strongly the established knowledge is 
established and that even prominent researchers can be easily 
misled by the system of its doctrines.  

 
Camouflaging the hyperbolic equation 

Here is an example how the well-known differential equation 
describing hyperbolic growth was disguised as something new, 
which was supposed to explain the mechanism of growth based on 
the assumption that the growth of population is finely-tuned to the 
technological development. In its undisguised form, the differential 
equation (2) describes hyperbolic growth but does not explain its 
mechanism. It is just a mathematical equation, which when solved 
produces hyperbolic distribution. However, in its disguised form it 
seems to contain an explanation of the mechanism of growth. It 
seems to show that the growth of population is determined by the 
level of technology or knowledge.  

This is a good example, which demonstrates that one should 
never be mesmerised by complicated mathematics. Mathematical 
formulations can be complicated and useful but just because they 
are complicated it does not mean that they are useful. Unified 
Growth Theory (Galor, 2005a, 2011), which is supposed to explain 
the mechanism of economic growth, is full of such complicated 
mathematical formulations. However, these complicated formulae 
do not explain anything. They just translate erroneous concepts 
into mathematical language. Data describing economic growth and 
the growth of population (Maddison, 2001) were used but they 
were never analysed to check the proposed theory. They were 
presented in a distorted way to make the impression that theory is 
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confirmed by data. In the example presented here, the discussed 
mathematical equations are relatively simple and even attractive 
but they give a corrupted and mathematically unacceptable 
representation of the well-known differential equation [eqn (2)] 
describing hyperbolic growth. 

Korotayev (2005) used the following differential equations to 
describe and explain the growth of population: 

 

)()]()([
)(

tStStbKa
dt

tdS
 ,               (47) 

)()(
)(

tKtcS
dt

tdK
 .                (48) 

 
According to his interpretation ‚K is the level of 

technology/knowledge, bK corresponds to the number of people 
(N) [ ( )S t in our notation], which the earth can support with the 
given level of technology (K)‛ (Korotayev, 2005, p. 81). Thus bK 
is interpreted as the carrying capacity of the planet.  

To fit the population data, Korotayev carried out step-by-step 
calculations based on the eqns (47) and (48) but presented in a 
different form: 

 

iiii KcSKK 1
,                            (49) 

iiiii SSbKaSS )( 11  
.              (50) 

 
There is absolutely no reason why ( )K t  should represent 

technology or knowledge. We can call it whatever we want but just 
because we call it technology, knowledge or the carrying capacity 
it does not mean that it represents these imposed by us concepts. In 
the logistic model, which is similar to the eqn (47), it is a constant 
describing the limit to growth, which may or may not represent the 
carrying capacity. However, we shall show that in eqns (47) and 
(48), ( )K t has nothing to do even with the limit to growth. It is a 

variable that does not restrict growth in any way because ( )K t  is in 

fact ( )S t . It is simply the size of population or the size of any, 
hyperbolically-increasing quantity. Consequently, even if we use 
this set of differential equations and even if we fit data, we cannot 
claim that we have explained the growth of human population. 

To show that ( )K t is in fact just ( )S t , let us start with the 
differential equation for the hyperbolic growth [see eqn (2)]: 
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)(
)( 2 tkS

dt

tdS
 .                (51) 

 
It is the same equation as eqn (2) but it is now presented in s 

slightly different form. Let us now replace k by 
 

( 1)k c a b   .                (52)  
 
where c, a and b are constants. Mathematically, this 

modification is acceptable because k is a constant and we can 
always replace a constant by any combination of constants. 
Normally, we would not do it. We do it here to show that the eqns 
(47) and (48) represent a complicated representation of the eqn 
(51). However, we shall show that these equations represent also a 
corrupted form of the eqn (51).  

 
Equation (51) can now be expressed as 
 

)()]()([
)(

tStStbSa
dt

tdS
 .              (53) 

 
This equation is already almost the same as the eqn (47). But 

now let us corrupt this equation. Let us replace one )(tS  in the eqn 

(53) by )(tK , while keeping the other )(tS unchanged. So now we 
have two equations: 

 

)()]()([
)(

tStStbKa
dt

tdS
 ,              (54) 

)()( tStK  .                             (55) 
 
If )()( tStK  then of course: 
 

.                (56)  

 
However, according to the eqns (51), (52) and (55), and 

supported by the selective treatment of )(tS , we have 
 

.                         (57) 

( ) ( )dK t dS t

dt dt


2 2( )
( ) ( ) ( ) ( )

dS t
kS t cS t cS t K t

dt
  
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So finally, we now have 
 

)()]()([
)(

tStStbKa
dt

tdS
 ,              (58) 

( )
( ) ( )

dK t
cS t K t

dt
 .                            (59) 

 
These two equations are precisely the same as the eqns (47) and 

(48), and functionally the same as the eqn (51). However, now we 
have three constants, a, b and c, rather than just one constant k. We 
also have one ( )S t disguised as ( )K t , while the other ( )S t retains 

its identity. The variable )(tK is just the size of the population. It 
has nothing to do with technology, knowledge or carrying capacity. 
Korotayev’s differential equations do not explain the mechanism of 
growth. They only describe the growth of human population using 
the well-known mathematical differential equation for the 
hyperbolic growth. They do not explain why the growth of 
population was hyperbolic.  

We have repeated the calculations of Korotayev (2005) using 
his eqns (47) and (48) and his step-by-step procedure defined by 
eqns (49) and (50). Results are presented in Figure 4. They show 
that ( )K t  is precisely the same as ( )S t , ( ) ( )K t S t . The two 

distributions are indistinguishable. ( )K t is not technology, 
knowledge or carrying capacity but the size of the hyperbolically 
increasing quantity, such as population or the GDP. 
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Figure 4. Results of calculations carried out using eqns (47) and (48) 

and the step-by-step procedure defined by eqns (49) and (50). They 
confirm that ( ) ( )K t S t . Eqns (47) and (48) represent a camouflaged 

eqn (51), which describes hyperbolic growth. The data represent the 
average values of the size of the world population calculated using the 

compilations of Manning (2008) and of the US Census Bureau (2016). 
 

Korotayev accepts now that he made a mistake: ‚I agree with 
what you wrote.‛ (Korotayev, 2015). However, his model and his 
calculations have been published in a peer-reviewed journal and as 
far as we can tell they were never corrected.   

This earlier attempt by Korotayev (2005) was followed by a 
new approach designed to link the growth of population with 
economic growth (Korotayev & Malkov, 2012; Korotayev, Malkov 
& Khaltourina, 2006a): 

 
( )

( ) ( )
dS t

aq t S t
dt

 ,                (60) 

( )
( ) ( )

dq t
bq t S t

dt
 ,                 (61) 

 
where ( )S t is again the size of human population, a and b are 

adjustable constant and ( )q t is claimed to be, again for no 
convincing reason, the surplus of the GDP per capita.  

If we compare eqns (51) and (60), we can see that if the eqn 
(60) is supposed to describe hyperbolic growth of population or the 
GDP, then ( )q t cannot be anything else but ( )S t , the size of the 
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population or the GDP. The eqn (60) is the same as the eqn (51) 
except that, for no good reason, one ( )S t  is now replaced by ( )q t . 

However, this also means that a b and indeed the authors of 
these two equations have determined that 1.04a b , which is as 
good as a b . The two equations are identical. They are not two 
different equations but the same equation repeated twice, the same 
equations as eqn (51) but now one ( )S t is again disguised, this 

time as ( )q t , which for absolutely no convincing reason is called 
the surplus of the GDP per capita. 

We can replace S by any letter in the alphabet. We can call the 
replaced letter anything we want but in this context, it is nothing 
else but the size of population or the GDP or the size of any other 
hyperbolically increasing quantity. We are back to the original 
habit of corrupting the perfectly good and legitimate hyperbolic 
equation, but now we are not representing one of the ( )S t as ( )K t  
, which for no good reason was called technology or knowledge. 
We are now representing one of the ( )S t  as ( )q t , which again for 
no convincing reason is called the surplus of the GDP per capita. 

In the earlier mistake, the hyperbolic differential eqn (51) or (2) 
was disguised as two distinctly different equations. Now it is 
disguised as two similar equations, which are in fact identical. 
Previously, the growth of population was supposed to have been 
explained by technology, knowledge or the carrying capacity, 
which was incorrect and misleading, because the so-called 
technology or knowledge or the carrying capacity was nothing else 
but the size of the hyperbolically increasing quantity ( )S t . Now, 
the growth of population is supposed to be explained by the surplus 
of the GDP per capita, which is again incorrect and misleading 
because the claimed surplus of the GDP per capita is just ( )S t , 
which represents the size of the hyperbolically increasing quantity. 
They are making the same mistake as before. They have not 
introduced any new idea but present the same mistake in a different 
mathematical form. 

The next step is to make it all even more mysteriously 
complicated. For obscure reasons, the growth of human population 
is now supposed to be described by a set of three differential 
equations (Khaltourina & Korotayev, 2007; Korotayev, Malkov & 
Khaltourina, 2006a, 2006b): 
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 1
dS

aqS L
dt

  ,                (63) 

dq
bqS

dt
 ,                 (64) 

 1
dL

cqL L
dt

  ,                (65) 

 
where a, b and c are adjustable constants and L is claimed, 

without any convincing justification, to represent the fraction of 
literate population, which implies that 1 L is the fraction of the 
illiterate population (Korotayev, 2015). In these equations, the time 
dependence is not explicitly displayed. So, ( )S S t , ( )q q t and 

( )L L t  
Again, if the eqn (63) is supposed to describe hyperbolically 

increasing distribution, such as population or the GDP, then 
(1 )q L S  . We can replace one S in the hyperbolic differential 

equation (51) by whatever we want but functionally it will be still 
S.  

A modified version of the three equations (63)-(65) are 
equations containing even more, spurious and meaningless 
parameters (Korotayev, Malkov & Khaltourina, 2006b): 

 

  31 2 1
dS

aq S L
dt

   ,               (66) 

54
dq

bq S
dt

 ,                 (67) 

  86 7 1
dL

cq L L
dt

 
  ,                (68) 

 

where i with 1 8i   are arbitrary adjustable positive 

constants ‚not necessarily equal to one‛ (Korotayev, Malkov & 
Khaltourina, 2006b, p. 73). The interpretation of these additional 
parameters is also obscure.  

Korotayev and his associates claim that they can generate 
hyperbolic growth with a transition to a new type of growth. 
However, they did not introduce any new concepts, which could 
justify this claim. They have just replaced two equations by three 
and one spurious variable by two. They follow the same idea as 
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expressed in the eqns (47) and (48). In the original equations, a 
spurious variable ( )K t , was introduced which for no good reason 
was called technology or knowledge or the limit to growth and 
which turned out to be just the size of population or some other 
hyperbolically increasing quantity. Now, the original two equations 
are replaced by three because two spurious variables are 
introduced, ( )q t and ( )L t , which for no convincing reason are 
called the surplus of the GDP per capita and the fraction of literate 
population, respectively. The method of calculations is also the 
same, i.e. as outlined in the eqns (49) and (50).  

Whatever is done is hidden in the obscure calculation 
procedure. As before, one would have to repeat their calculations 
to understand better the source of error or maybe to become 
convinced that whatever they are doing is correct. However, from a 
start, there is no convincing justification for claiming that q 
represents the surplus of the GDP per capita and that L represents 
the fraction of literate population, described also as ‚potential 
teachers‛ (Korotayev, Malkov & Khaltourina, 2006a, p. 26, 2006b, 
p. 73). There is also no convincing justification for claiming that 
the growth of population should be so vitally dependent on the 
surplus of the GDP per capita and on the number of potential 
teachers.    

We could probably invent many other complicated formulae to 
replace the simple and working eqn (2) or (51). We could also 
label the new introduced variables or constants in whatever way we 
want but could we claim that we have contributed to a better 
understanding of the mechanism of hyperbolic growth?  

 
Microscopic growth theory 

The concept of Karev (2005a, 2005b, 2010) and Karev & 
Kareva (2014) is to see human population (or other biological 
systems) as being made of individuals, each characterised by a 
certain, unique parameter a. In a more general formulation of this 
theory, this uniquely defining parameter is a multi-dimensional 

vector )...,( 21 naaaa 


made of many characteristic components. 

In the extreme case, we could think that the components of the 

vector a


 are made of genes or even of the components of the 
whole genome. In such a case, the multidimensional vector would 
be made of 106-109 components (Karev, 2005b).   

This theory is based on the advanced and aesthetically 
appealing mathematics. We shall explain the fundamental concepts 
of this theory. Once the fundamental ideas are understood, it will 
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be easier for anyone to read the more advanced description 
presented by Karev (2005a, 2005b, 2010) and Karev & Kareva 

(2014). In our discussion, we shall replace vector a


 by constant a.  
Rather than dealing with individuals characterised by the 

parameter a, it is assumed that the entire population is made of a 
certain number of groups of a-clones, each group characterised by 
the same parameter a and each group made of ( , )n t a number of 
members at a given time t. In order to calculate the growth of 
population we first calculate the growth of each group of a-clones. 
The differential equation describing the growth of a-clones is given 
by   

 
1 ( , )

( , )
( , )

dn t a
F t a

n t a dt
 .               (69) 

 
The function ( , )F t a  is called ‚the per capita reproductive 

rate‛ (Karev & Kareva, 2014, p. 73) but the well-known and 
accepted definition of the net reproductive rate is the number of 
daughters born per woman in her lifetime. In the same publication, 

( , )F t a appears also as ( )ag N , where in our notation N 

represents ( )S t , and ( )g N  is interpreted as ‛some function, 
chosen depending on the specifics of the model‛ (Karev & Kareva, 
2014., p. 69). Karev agrees (Karev, 2015) that it would be better to 
call ( , )F t a simply as a growth factor, which will depend on the 
model used in the calculations. However, if we use the concept of 
the general law of growth (Nielsen, 2016k), then this factor can be 
identified simply as the force of growth, which in the microscopic 
theory can have a variety of representations.  

The factor ( , )F t a contains all the information about the 
mechanism of growth of each group of a-clones. The microscopic 
theory does not describe any single mechanism but gives a 
complete freedom to explore a variety of options. Each specifically 
chosen mathematical representation of the factor ( , )F t a will 
describe a certain mechanism of growth of each group of a-clones, 
but the mechanism will remain unknown until the chosen 
mathematical description of ( , )F t a is not only convincingly 
explained but also justified.  

The additional complication in this theory is that the calculated 
size ( )S t of the population made of numerous groups of clones will 
depend on how their growth is combined. To understand the 
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mechanism of growth of population it is necessary to explain not 
only the factor ( , )F t a but also to justify a specific mathematical 
way of combining the growth of all clones.  

The growth rate of population is given by: 
 

1 ( )
( ) ( , )

( )

dS t
E t F t a

S t dt
 ,               (70) 

 
where ( )E t is a function describing the mathematical way of 

combining the growth of population in all groups of clones. So 
now, the description of the mechanism of growth depends not only 
on ( , )F t a but also on ( )E t . In order to explain this mechanism, it 

is not enough to explain and justify the factor ( , )F t a but also ( )E t

. The force of growth is given by the product of ( , )F t a and ( )E t .  

The calculation of ( )E t  is based on the assumption that the 
populations of various groups of clones are distributed along a 
certain probability density function ( , )p t a defined as: 

 
( , )

( , )
( )

n t a
p t a

S t
 .                (71) 

 
The function ( , )p t a describes the probability of having ( , )n t a

number of individuals characterised by the unique parameter a, i.e. 
the probability distribution of the parameter a. 

The definition of ( )E t , based on the publication of Hofbauer 
and Sigmund (1998), is: 

 

0

( ) ( , )E t ap t a da



  .                (72) 

 
To illustrate the application of this theory to the description of 

the growth of human population we shall use three models of 
growth presented by Karev (2005a) leading to three solutions. 

Solution 1 
This solution is based on the assumption that ( , )F t a a . 

Consequently, 
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1 ( , )

( , )

dn t a
a

n t a dt
 .                (73) 

 
In this model, it is assumed that each group of a-clones 

increases exponentially. The growth is prompted by a constant 
force generating a constant growth rate. This is the force of 
unknown nature. We do not know why this force should be 
constant. We just assume that it is. Thus, from the very beginning 
we cannot explain the mechanism of growth. Whatever we shall 
calculate will not help us to understand the growth of population. 
Maybe we shall be able to fit the data but we already know that the 
data can be fitted well (Nielsen, 2016a, 2016c) using the simple 
expression describing hyperbolic distribution [see eqn (1)]. The 
approach proposed by the microscopic theory will offer an 
alternative description but it is more complicated and there is no 
clear reason for preferring this approach.  

The growth of human population as a whole is given now by: 
 

1 ( )
( )

( )

dS t
E t a

S t dt
 .                (74) 

 
Karev (2005a) gives the following expression for ( )E t a , 

determined by his choice to describe mathematically the 
probability density function ( , )p t a : 

 

( )
k

E t a
s t

 


,                (75) 

 
where  , k and s are adjustable constants (s, k>0, 

  ). For t s , this function escapes to infinity.  
The differential equation for the growth of human population is 

now given by: 
 

1 ( )

( )

dS t k

S t dt s t
 


.               (76) 

 
The right-hand side of this equation is again the force of growth 

of unknown origin and it is even less acceptable than the constant 
force because it is more complicated. If we had reservation about 
using a constant force of unknown origin to describe the growth of 
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a group of clones [eqn (73)] our reservation is now even stronger 
because the force describing the growth of population is 
significantly more complicated and also unexplained. We can see 
that explaining the mechanism of growth is becoming 
progressively more difficult. We might only hope that perhaps our 
formula will give a better description of data but we shall soon see 
that it does not.  

The solution of the eqn (76) presented by Karev (2005a) is 
 

0( )
(1 / )

t

k

e
S t S

t s






, for t s ,              (77) 

 
which is the exponentially modulated hyperbolic-like growth 

because it increases to infinity when t s . It is not clear why we 
should want to use this distribution when we already have a 
simpler distribution given by the eqn (1) fitting the population data.  

If 0 , then 
 

kst
StS

)/1(

1
)( 0


  for st   .              (78) 

 
The size of population approaches singularity when time t 

approaches the parameter s.  For 1k  it is the first order 
hyperbolic growth given by the eqn (1). We can explain this 
formula but we cannot explain the mechanism of growth. We 
cannot explain why the growth should be expected to behave in 
this particular way. 

Solution 2 
Solution 2 is also based on the assumption of an exponential 

growth of each group of a-clones but now a different mathematical 
description is used for the probability density function ( , )p t a , 

which gives different expression for ( )E t a  used in the eqn (74): 
 

( )

1
( )

1 c s t

c
E t a

s t e 
 

 
.               (79) 

 
( )E t a escapes to infinity when t s .  

The differential equation for the growth of human population is 
now given by: 
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( )

1 ( ) 1

( ) 1 c s t

dS t c

S t dt s t e 
 

 
,              (80) 

 
and its solution by: 
 

( )

0

1
( )

(1 )(1 )

c t s

sc

e
S t S

t s e








 
.

               

(81) 

 
Parameters used by Karev (2005a) are 114.0c  and s = 2026. 

The corresponding product cs  is large and the second term in the 
denominator can be neglected. The formula (81) can now be 
presented as  

 

 st

e
StS

stc








1

1
)(

)(

0 .                (82) 

 
This solution resembles the first-order hyperbolic growth 

because the denominator is a linear function of t, and if not for the 
function appearing in the numerator, the growth of the population 
would escape to infinity at st  . However, when st  , the 
numerator is also zero. Close examination of the eqn (82) shows 
that when t approaches s, this fraction approaches a constant value, 
which depends on parameters s and c. Furthermore, calculations 
show that for st  , )(tS increases approximately hyperbolically 
but for st  , it increases approximately exponentially. Thus, the 
Solution 2 can be seen as being made of two parts: a hyperbolic 
growth to t s and an exponential growth from t s with an 
instantaneous discontinuity at precisely st  .  

Mathematically, this formula is interesting because it shows that 
by assuming a certain force of growth it might be possible to 
generate a trajectory, which would, at a certain stage, change from 
hyperbolic to a different type of growth. If we could explain the 
nature of this peculiar force and if we could reproduce data, we 
would make a huge progress in the understanding of the 
mechanism of growth. However, in this particular case we have no 
clue about the nature of this peculiar force and, as we shall soon 
see, the formula given by the eqn (82) does not fit the data. 
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Solution 3 
Solution 3 is based on the assumption that ( , )F t a , which in 

Solutions 1 and 2 was constant, is now represented by the modified 
logistic growth rate (Gilpin & Ayala, 1973).  

 

( )
( , ) 1

k
S t

F t a a
K

  
   

   

.               (83) 

 
Again, we do not know the nature of this force.  
Under this assumption, the growth of each group of a-clones is 

given by 
 

1 ( , ) ( )
1

( , )

k
dn t a S t

a
n t a dt K

  
   

   

,

              

(84) 

 
where 0k const   and K is the limit to growth. 
Unless 1k  , the driving force of growth for each group of 

clones decreases non-linearly with the size ( )S t of the whole 
population. The growth of each group of clones is no longer 
defined by the parameter a alone, which represents exclusive 
characteristics of any particular group of clones, but it also depends 
on the size of the whole population. The growth of each group of 
clones is somehow coupled to the growth of other clones.  

The differential equation for the whole population is now given 
by: 

 

1 ( ) ( )
( ) 1

( )

k
dS t S t

E t a
S t dt K

  
   

   

.              (85) 

 
Karev (2005a) uses the following expression for ( )E t a : 
 

 ( )

1 1
( )

( ) 1
c s p t

E t a
s p t e


 

 
,              (86) 

 
where )(tp is a solution of Cauchy problem: 
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k

scKe

stpc

tps

s
S

dt

tdp
















1

]})([exp{1

)(
1

)(
0 .        (87) 

 
So, now, the differential equation describing the growth of 

human population is given by: 
 

 ( )

1 ( ) 1 1 ( )
1

( ) ( ) 1

k

c s p t

dS t S t

S t dt s p t Ke


    
     

       

,            (88) 

 
and the size of population by 
 

sce

stpc

tps

s
StS








1

]})([exp{1

)(
)( 0

.             (89) 

 
The description of the growth of human population is now 

significantly more complicated. Solutions given by eqns (78) and 
(82) were relatively simple because they were based on the 
assumption of the simplest type of growth of the individual groups 
of clones, growth of each clone prompted by a constant force. Even 
though we were not able to explain the mechanism of growth of the 
entire population made of various groups of clones we could at 
least explain the mathematical formulae describing growth. 
However, in the case of the growth described by the eqn (89) we 
cannot even understand this formula let alone to understand the 
mechanism of growth of the entire population. We do not 
understand why the growth of human population should follow this 
particular trajectory. Even if we could fit the theory to data 
precisely and over the entire range of time, we would be still 
unable to explain the mechanism of growth. 

Comparing theory with data 
Solutions 1-3 are shown in Figures 5 - 7. They are compared 

with data coming from a wide range of sources compiled by 
Manning (2008) and by the US Census Bureau (2016).  

In Figure 5 we show the reciprocal values of data and the 
reciprocal values of Solutions 1-3. The advantage of using this 
display is that the decreasing linear trends identify uniquely 
hyperbolic distributions (Nielsen, 2014).  

The common feature of all these solutions is that over the nearly 
entire range of time during the AD era they all follow hyperbolic 
trajectories. However, they reproduce data over a strongly limited 
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range of time. Consequently, there is no advantage in using these 
solutions. The microscopic theory does not give a better 
description of data than the simple hyperbolic formula, which can 
reproduce data over the past 12,000 years (Nielsen, 2016a). 
Solutions 2 and 3 are indistinguishable in this display. Solution 1 is 
only slightly different. Differences between these three solutions 
can be observed only towards the end of the time scale, as shown 
in Figures 6 and 7.  

 

 
Figure 5. The decreasing straight lines of reciprocal values identify 

uniquely hyperbolic growth. Reciprocal values of solutions 1, 2 and 3 
[eqns (78), (82) and (89)] are compared with the reciprocal values of the 
world population data as compiled by Manning (2008) and by the US 

Census Bureau (2016). 
 

 
Figure 6. Solutions 1, 2 and 3 [eqns (78), (82) and (89)] are compared 

with the world population data compiled by Manning (2008) and the by 
US Census Bureau (2016). 
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Figure 7. Trajectories generated by Karev’s Solutions 1, 2 and 3 

(Karev, 2005a) in the region where they start to divert to different 
trajectories are shown together with population data using the 

compilations of Manning (2008) and of the US Census Bureau (2016). 
Solution 1 escapes to infinity. Solution 2 converts to an exponential 

growth, while Solution 3 converts into a logistic growth. 
 
While the concept of the microscopic approach to the study of 

the growth of population is interesting, it is not only extremely 
complicated but also it creates serious problems for the explanation 
of the mechanism of growth. Examples used by Karev (2005a) 
show that the complicated mathematical solutions generated by this 
theory imitate hyperbolic distributions, which can be represented 
by a much simpler equation [see eqn (1)]. Furthermore, these 
solutions reproduce only a very small range of data. 

The problem with using this theory to explain the mechanism of 
growth is well illustrated by Solutions 1, 2 and 3 given by the eqns 
(78), (82) and (89) and by the accompanying expressions for 

( )aE t given in the eqns (75), (79) and (86). While we can explain 
some of these expressions, we cannot use them to explain the 
mechanism of growth.   

An interesting feature of this exercise is that a single force of 
growth can describe a trajectory, which at a certain stage can 
change from hyperbolic to some other type. If we could find a 
force that could reproduce data over the whole range of time and if 
we could explain the nature of this force, we would have made a 
huge progress in explaining the mechanism of growth. However, 
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examples presented by Karev indicate that finding such a force of 
growth and explaining its origin is close to impossible.  

 
Summary and conclusions 

We have presented here a brief survey of attempts to understand 
hyperbolic distributions. The common characteristic of all these 
attempts is that they are not only complicated but that they are also 
unnecessarily complicated because a simple expression given by 
eqn (1) describes data exceptionally well (Nielsen, 2016a, 2016c). 
This simple formula describes not only the growth of population 
but also economic growth as expressed by the Gross Domestic 
Product (Nielsen, 2016b). Furthermore, by using this simple 
formula we can also easily describe income per capita and explain 
its puzzling features (Nielsen, 2015, 2016g).  

Complicated methods used in the interpretations of hyperbolic 
growth did not yet result in explaining its mechanism. They also 
did not produce a better description of data than the descriptions 
given by the simple expression represented by the eqn (1).  

When mathematical formulations become increasingly 
complicated it is usually a warning sign that we are on the wrong 
track, that we should stop, regroup and look for simpler 
descriptions and solutions. A simple formula [eqn (1)] describing 
population and economic growth suggests that there must be also a 
simple explanation of their mechanisms. Such a simpler 
explanation will be proposed in the next publication.  
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3. Examination of Malthusian positive checks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
althus (1798) is well known for having his name 
associated with the erroneous concept of stagnation 
expressed in such phrases as Malthusian stagnation, 

Malthusian regime, epoch of Malthusian stagnation, Malthusian 
trap and escape from Malthusian trap, the concept he never 
proposed or advocated, the concept based on impressions, on a 
good dose of fantasy and on the suitable manipulation of data 
(Ashraf, 2009; Galor, 2005a; 2005b; 2007; 2008a; 2008b; 2008c; 
2010; 2011; 2012a; 2012b; 2012c; Galor & Moav, 2002; Snowdon 
& Galor, 2008). The concept of stagnation and all other related 
concepts have been repeatedly and convincingly contradicted by 
data and by their mathematical analyses (Biraben, 1980; 
Clark,1968; Cook,1960; Durand, 1974; Gallant, 1990; Haub, 1995; 
Kapitza, 2006; Kremer, 1993; Lehmeyer, 2004; Livi-Bacci, 1997; 
Maddison, 2001; 2010; Mauritius, 2015; McEvedy & Jones, 1978; 
Nielsen, 2013a; 2013b; 2013c; 2014; 2015; 2016a; 2016b; 2016c; 
2016d; 2016e; 2016f; 2016g; 2016h; 2016i; Podlazov, 2002; 
Shklovskii, 1962; 2002; Statistics Mauritius, 2014; Statistics 
Sweden, 1999; Taeuber & Taeuber, 1949; Thomlinson, 1975; 
Trager, 1994; United Nations, 1973; 1999; 2013; von Hoerner, 
1975; von Foerster, Mora & Amiot, 1960; Wrigley & Schofield, 
1981). 

Malthus (1798) proposed three fundamental mechanisms 
contributing to the growth of human population: (1) the devastating 
effects of positive checks, (2) the regenerating effects of positive 
checks and (3) the effects of preventative checks. He did not 

M 
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explain the mechanism of growth of population. He only claimed 
that ‚Population, when unchecked, increases in a geometrical 
ratio‛ (Malthus, 1978, p. 4). Now we know that this is not true. 
Population, when unchecked does not increase in a geometrical 
ratio (exponentially) but hyperbolically (Kapitza, 2006; Kremer, 
1993; Nielsen, 2016b, 2016d; Podlazov, 2002; Shklovskii, 1962, 
2002; von Hoerner, 1975, von Foerster, Mora & Amiot, 1960).  

Malthus carried out an important pioneering work but it was for 
the future generations of researchers to explore these three 
proposed contributing mechanisms and to understand their impacts, 
if any, on the growth of population. Malthus did not have sufficient 
data to carry out such research. He described lethal effects of 
demographic catastrophes but he never claimed explicitly that they 
would create a lasting stagnation in the growth of human 
population, let alone that they would produce the epoch of 
stagnation as it is now erroneously claimed (Galor, 2005a, 2011). 
Indeed, his claim that population if unchecked increases 
exponentially seems to suggest that he did not imagine prolonged 
or lasting effects of such positive checks. 

Now we know that the growth of the world population, for 
instance, might have been checked only once in the past 12,000 
years by the unusual convergence of no fewer than five major 
demographic catastrophes, which introduced only a minor 
disturbance between AD 1200 and 1400 (Nielsen, 2016d). There is 
also no convincing evidence of the frequently occurring 
devastating effects of Malthusian positive checks in the growth of 
regional populations (Nielsen, 2016b). These surprising results 
could be perhaps explained in two ways: (1) that the relative 
impacts of demographic catastrophes were generally too small and 
(2) that the devastating effects of positive checks were to a certain 
degree compensated by their regenerating effects, which Malthus 
mentions in his book.  

The aim of the current publication is to continue the work of 
Malthus and to investigate impacts of positive checks, the work 
Malthus could not do because he did not have relevant data. He 
described the devastating effects of positive checks but he also did 
not fail to notice and record their positive effects in stimulating 
growth.  

We shall start from where Malthus was forced to stop and we 
shall investigate how the effects of positive checks are reflected in 
the growth of human population. We shall assume that the intensity 
of Malthusian positive checks can be measured by the level of 
deprivation. We shall first define this indicator. We shall then see 
how this indicator is reflected in the standard of living. Using this 
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indicator, we shall then see how Malthusian positive checks are 
reflected in the destructive effects such as the increased death rates. 
We shall then investigate the other side of these positive checks 
and demonstrate how they are reflected in the process of 
regeneration, such as in the increased rate of natural increase, the 
increased growth rate and the increased total fertility rate. This 
study will allow us to extend the work of Malthus, which he 
published around 200 years ago, and to understand better the 
effects of his positive checks, the effects outlined only briefly in 
his book.  

 
Measuring the intensity of Malthusian positive 

checks 
Effects of Malthusian positive checks can be studied 

conveniently using the data compiled by the United Nations 
Development Program (UNDP, 2011). These data are linked with 
the three-dimensional Human Development Index (HDI) (UNDP, 
2010), which is defined using the levels of health, education and 
income. Human Development Index varies between 0 and 1 and 
measures the level of human development or the level of 
prosperity. The HDI close to 1 is for prosperous countries.  

We could use this index to describe indirectly the intensity of 
Malthusian positive checks but then in order to understand the 
studied correlations, which we are going to present, and to study 
the effects Malthusian positive checks, we would have to translate 
mentally the HDI into the levels of deprivation. In order to link the 
UNDP data directly to the level of deprivation and thus to the 
intensity of Malthusian positive checks, it is better to introduce just 
a slight modification of the HDI and define the Level of 
Deprivation Index (LDI) as: 

 
HDILDI  1       (1) 

 
This index varies from around 0 (for the low level of 

deprivation) to around 1 (for the high level of deprivation). At the 
high end of the spectrum, this index is linked with such conditions 
as poor health care, low income, severe poverty, inadequate access 
to sanitation facilities, inadequate access to pure water, hunger, 
inadequate housing, poor education, devastating effects of wars 
and military conflicts, high incidents of infectious diseases and all 
other conditions, which are usually identified as representing the 
intensity of Malthusian positive checks. As the level of deprivation 
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decreases, the intensity of Malthusian positive checks also 
decreases. 

It should be noted that for Malthus positive checks were not 
necessarily represented by the usually claimed great calamities 
such as wars, famines and pestilence. Furthermore, for him, 
positive checks did not have to apply to the whole country but to 
certain groups of people within a given country or even to 
individual families.  

Notwithstanding, then, the institution of the poor laws in 
England, I think it will be allowed that considering the state 
of the lower classes altogether, both in the towns and in the 
country, the distresses which they suffer from the want of 
proper and sufficient food, from hard labour and 
unwholesome habitations, must operate as a constant check 
to incipient population. (Malthus, 1798, p.31. Italics 
added.). 
Labour would be ill paid. Men would offer to work for a 
bare subsistence, and the rearing of families would be 
checked by sickness and misery (Malthus, 1798, p.64. 
Italics added.). 

In all mathematical formulae and diagrams presented in this 
study, x is reserved exclusively for the LDI, which will be always 
used as an independent variable, while y will be used for any 
relevant dependent variable. It should be also noted that while the 
derived formulae can have a general application, the exact values 
of the constants apply only to the data published by UNDP (2011). 

We shall first examine how the level of deprivation, i.e.  how 
the intensity of Malthusian positive checks, is reflected in the 
standard of living represented by such indicators as the ecological 
footprint (EF), income per capita, the intensity of severe poverty, 
access to clean water and access to sanitation facilities. We shall 
then examine the devastating effects of Malthusian positive checks 
as reflected in the increased morality. Finally, we shall examine the 
regenerating effects by showing how growth-promoting indicators 
depend on the intensity of Malthusian positive checks. 

 
Malthusian positive checks reflected in the standard 

of living 
We shall now present three examples showing how the intensity 

of Malthusian positive checks as described by the Level 
Deprivation Index are correlated with the standard of living. 
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Malthusian positive checks reflected in the ecological 
footprint (EF) 

Ecological footprint (EF) measures the level of consumption of 
natural resources and the level of the associated damage to the 
environment (Ewing, et al., 2010). The footprint is expressed in 
global hectares per person [gha/cap] of the biologically productive 
surface area: crops, grazing, fishing, forests for timber and 
firewood, forests for carbon dioxide absorption and land for human 
habitat.  

The dependence of the ecological footprint (EF) on the Level of 
Deprivation Index (LDI), based on the UDDP data (UNDP, 2011), 
is shown in Table 1. Small ecological footprint is associated with a 
small consumption of natural resources and with a high intensity of 
Malthusian positive checks as reflected in the Level of 
Development Index (LDI). These data show that only a small 
fraction of human population is responsible for the excessively 
large ecological footprint.  

 
Table 1. The average Level of Deprivation Index (LDI) and the average 
ecological footprint (EF), expressed in gha/cap, for various levels of 
human development, based on the UNDP data (UNDP, 2011). 

Level of development LDI  EF 
[gha/cap] 

Population 
[Million] 

Very high human development 0.111 5.8 1,130 
High human development 0.259 2.5 973 
Medium human development 0.370 1.7 3,546 
Low human development 0.544 1.2 1,260 

 
The average global ecological footprint in 2011 calculated 

using the UNDP data (UNDP, 2011) was 3 gha/cap. According to 
the data shown in Table 1, ecological footprint was higher than this 
average value for 16.5% of the world population. For this small 
groups of people, the average intensity of Malthusian positive 
checks was low (LDI = 0.111). In contrast, for 18.4% of global 
population, the intensity of Malthusian positive checks was 
approximately five times higher (LDI = 0.544). The dependence of 
the ecological footprint on the level of deprivation is shown in 
Figure 1. Each dot in this diagram (and in all other diagrams 
presented in this publication) represents one of the 187 countries 
listed in the UNDP compilation (UNDP, 2011).  
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Figure 1. Correlation between the intensity of Malthusian positive checks 

as measured by the LDI and the ecological footprint (EF). The data are 
from the United Nations Development Program (UNDP, 2011). They are 

compared with two best fits using hyperbolic distributions. 
 
The best fit to the data presented in Figure 1 is obtained by 

using the second-order hyperbolic distribution:  
 

2 1

0 1 2( )y a a x a x     ,     (2) 

 
where x is the LDI and y is the ecological footprint. For this set 

of data (UNDP. 2011), 0 0.126a  , 1 4.406a   and 2 1.139a  

.  
However, a satisfactory fit can be also obtained using a much 

simpler, first-order, hyperbolic distribution  
 

1y ax ,       (3) 
 
where 0.646a  .  
For the large values of the LDI, ecological footprint increases 

slowly with the decreasing level of deprivation. Thus, in the 
extreme case, for countries characterised by the high values of the 
LDI, i.e. by the high intensity of Malthusian positive checks, a 
large reduction in the level of deprivation, and thus in the intensity 
of Malthusian positive checks can be achieved by only a relatively 
small increase in the ecological footprint.  

We shall show later how the intensity of growth of population 
increases with the intensity of the LDI, i.e. with the intensity of 
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Malthusian positive checks. Figure 1 suggests that large reductions 
in the intensity of growth of human population could be achieved 
by improving living conditions of poor countries through a 
relatively small increase in their ecological footprint.  

In contrast, as we can see from the correlation presented in 
Figure 1, a large increase in the ecological footprint of rich 
countries (characterised by the low LDI values) results in only 
marginal improvement in their standard of living. Their standard of 
living is already so high that to improve it by only a small degree 
requires enormous increase in their consumption of natural 
resources, which is not only unfair for poor countries but also 
imprudent because a better distribution of wealth could contribute 
significantly to reducing the growth of human population and to 
the global security.  

 
Malthusian positive checks reflected in the income per capita 

The dependence of the Gross Domestic Product per person 
(GDP/cap) on the level of deprivation is shown if Figure 2.  

 

 
 

Figure 2. Exponential dependence of the Gross Domestic Product per 
person (GDP/cap) on the Level of Deprivation Index (LDI). The GDP is 

in the purchasing power parity of 2009 international dollars 
 
The GDP/cap decreases exponentially with the increasing level 

of deprivation, i.e. with the intensity of Malthusian positive checks. 
The range of the GDP/cap is between $319 for the Demographic 
Republic of Congo and $91,379 for Qatar, with the US ($45,989) 
and Switzerland ($45,224) being located in the middle. 

The best fit to the data is obtained using exponential function,  
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rxy be ,        (4) 
 
where x is the LDI and y is the GDP/cap. For these particular 

set of data (UNDP, 2011), b = $71,144 and 6.97r   . 
Results presented in Figure 2 lead to the same conclusions as 

results shown in Figure1. At the far end of the LDI scale, a small 
increase in the GDP/cap by only around $4,000, on average, would 
advance countries from the low to medium level of human 
development. In contrast, an increase by around $20,000 would be 
needed to advance countries from high to very high level of human 
development. We can also look at it by comparing the increase in 
the GDP/cap needed to decrease the LDI by the same interval. For 
instance, to decrease the LDI from 0.500 to 0.400 one would need 
to increase, on average, the GDP/cap by only $2,000. In contrast, 
to decrease the LDI from 0.300 to 0.200 one would need to 
increase the GDP/cap by around $9,000.  

Malthusian positive checks reflected in the severe poverty 
and in other related indicators 

The dependence of the fraction of the population living in 
severe poverty on the intensity of Malthusian positive checks is 
shown in Figure 3.  

 

 
Figure 3. The fraction of population living in severe poverty (y) 

represented as a function of the LDI (x), i.e. as a function of the intensity 
of the Malthusian positive checks. 

 
It is essential to notice two important features of the correlation 

presented in Figure 3. First, the correlation is linear. Second, the 
correlation is characterised by a certain threshold below which the 
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fraction of the population living in severe poverty is on average 
zero. The intensity of Malthusian positive checks decreases 
linearly with the level of poverty. However, when the fraction of 
the population living in severe poverty reaches its zero value, the 
intensity of Malthusian positive checks reaches a certain threshold 
level. Any further decrease in the intensity of Malthusian positive 
checks is no longer correlated with the level of severe poverty, but 
it will continue to be correlated with the ecological footprint and 
with income per capita.  

This linear correlation indicates that severe poverty can be 
reduced even to zero without trying to reduce the intensity of 
Malthusian positive checks to zero. The reduction in the level of 
severe poverty will come first. After that, there could be other 
improvements, which would be reflected in other parameters 
describing the standard of living. 

Similar step-wise linear correlations apply also to the fraction of 
the population living below the poverty line and to the 
Multidimensional Poverty Index (MPI). The same type of 
correlations applies also to the size of the population with no 
access to clean water and to the size of the population with no 
access to sanitation facilities. All these data can be fitted using a 
simple mathematical expression: 

 
( )y m x n  , 0y  ,               (5) 

 
where n is a threshold below which 0y .  
For the data presented in the UNDP report (UNDP, 2011) and 

for the fraction of the population living in severe poverty, m = 190 
and n = 0.358. In terms of the ecological footprint and of the 
GDP/cap, this threshold corresponds to 1.7 gha/cap and 
$5,858/cap, respectively. Above these thresholds, the fraction of 
the population living in severe poverty could be expected to be on 
average negligibly small.  

For all indicators, mentioned earlier and characterised by such 
linear correlations, and for the data listed in the UNDP report 
(UNDP, 2011) the respective thresholds in the LDI vary between 
0.293 and 0.371. In terms of the EF and the GDP/cap, they vary 
between 1.6 and 2.1 gha/cap for the EF, and between $5,350 and 
$9,218 for the GDP/cap. These figures suggest that a moderate 
improvement in the living conditions of poor countries could have 
an enormous impact on reducing the level of poverty and on 
improving access to clean water and to sanitation facilities. We 
shall see later that the added benefit of improving the standard of 
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living in poor countries could be a significant reduction in the 
growth of population.  

 
The lethal impacts of Malthusian positive checks 
We can now take the next step and try to understand the 

destructive effects of Malthusian positive checks. An example of 
the dependence of mortality on the intensity of Malthusian positive 
checks is shown in Figure 4 for adult mortality.  

The effect is quite remarkable: mortality increases 
exponentially. We can analyse other relevant data (UNDP, 2011) 
and we shall get consistently similar results. Such exponential 
increase applies to deaths due to polluted water, maternal mortality 
and under-five mortality. It would appear that the exponential 
dependence of mortality on the intensity of Malthusian positive 
checks could be expected to apply also to other forms of mortality. 

Malthus did not study how mortality depends on the intensity of 
positive checks. He only pointed out that positive checks can be 
linked with the increased mortality. Now we know not only that 
mortality increases with the intensity of positive checks but also 
how it increases – it increases exponentially.  

The exponential distribution shown in Figure 4 is described by 
the eqn (4) but now with the positive parameter r. For the set of 
data listed by UNDP (2011), b = 124.83 and r = 2.925. Adult 
mortality is on average 66% higher in countries characterised by 
low human development than in countries characterised by 
medium human development, nearly 130% higher than in countries 
characterised by high human development and 255% higher than in 
countries characterised by very high human development. 

 
Figure 4. Exponential dependence of adult mortality (per 1000 adult 
population) on the level of deprivation (LDI), i.e. on the intensity of 

Malthusian positive checks. 
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The regenerating impacts of Malthusian positive 
checks 

Intuitively, one might expect that high mortality should be 
reducing the size of population and thus that it should be 
suppressing growth. This is what Malthus expected. ‚These facts 
seem to shew that population increases exactly in the proportion 
that the two great checks to it, misery and vice, are removed, and 
that there is not a truer criterion of the happiness and innocence of 
a people than the rapidity of their increase‛ (Malthus, 1798, p. 34).  

Thus, according to Malthus, the smaller is the intensity of 
misery and vice, the faster should be the growth of the population. 
Furthermore, his comment suggests that it should be a linear 
correlation.  

If his interpretation of growth is correct, we should expect that 
the growth rate of population should be decreasing with the 
increasing intensity of Malthusian positive checks, i.e. with the 
increasing level of deprivation. Furthermore, the high growth rate 
could be used as an indicator of ‚the happiness and innocence‛ 
because ‚there is not a truer criterion of the happiness and 
innocence of a people than the rapidity of their increase.‛ 

We are now going to show that Malthusian positive checks 
stimulate growth, which is hardly surprising because it is well 
known that poor countries are characterised by a rapid growth of 
population. Malthus observed this phenomenon of stress-induced 
growth but he did not follow his observation by a closer 
investigation perhaps because his access to relevant data was 
strongly limited. It is also obvious that rapid growth of population 
in poor countries does not contribute to their happiness.  
Total fertility rate increases exponentially with the intensity 

of Malthusian positive checks 
Total fertility rate is defined as the ‚number of children that 

would be born to each woman if she were to live to the end of her 
child-bearing years and bear children at each age in accordance 
with prevailing age-specific fertility rates‛ (UNDP, 2011, p. 142). 
The dependence of total fertility rate on the level of deprivation, 
i.e. on the intensity of Malthusian positive checks is shown in 
Figure 5. 
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Figure 5. Total fertility rate increases exponentially with the intensity of 
Malthusian positive checks, i.e. with the increasing level of deprivation 

(LDI). 
 
Analysis of the UNDP data (UNDP, 2011) leads to remarkable 

results. It shows that while morality increases exponentially with 
the intensity of Malthusian positive checks, total fertility rate also 
increases exponentially. This is the first and important indication 
that the growth of human population is not slowed down by the 
increased mortality.  

Growth rate is directly proportional to the intensity of 
Malthusian positive checks 

The correlation between the level of deprivation and the growth 
rate is shown in Figure 6. The data show that, on average, the 
annual growth rate is directly proportional to the level of 
deprivation, i.e. to the intensity of Malthusian positive checks. The 
larger is the intensity of Malthusian positive checks the larger is 
the growth rate.  

Contrary to the intuitive expectations and contrary to the 
repeated claims of the existence of the mythical epoch of 
Malthusian stagnation, the growth of human population is not 
decreased by the Malthusian positive checks but increased.  
However, when the intensity of Malthusian positive checks is 
exceptionally high and when they continue over a long time, the 
growth of population might be temporarily slowed down. This 
effect was observed in the growth of the world population but even 
then the temporary disturbance in the growth of population was 
followed by their more accelerated growth (Nielsen, 2016d). 
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Figure 6. The dependence of the annual growth rate on the level of 

deprivation, i.e. on the intensity of Malthusian positive checks. 
 
The straight line fitting the empirical growth rate data shown in 

Figure 6 is given by  
 

( )y m x n  ,       (6) 
 
where for this particular set of data (UNDP, 2011) m = 4.3 and 

n = 0.  
In countries characterised by the low level of human 

development, and consequently experiencing high intensity of 
deprivation and of the associated mortality, the growth of 
population as given by the UNDP data (UNDP, 2011) was on 
average about 5 times faster than in countries characterised by the 
very high human development and experiencing the low level of 
deprivation and mortality. 

Rate of natural increase is directly proportional to the 
intensity of Malthusian positive checks 

The rate of natural increase is defined as the difference between 
the death and birth rates and thus excludes the immigration and 
emigration rates. The correlation between the rates of natural 
increase and the levels of deprivation can be studied by using the 
2002 data for the rates of natural increase (US Census Bureau, 
2002) and the 2002 data for the HDI extrapolated from the 
tabulated data for 2000 and 2005 (UNDP, 2011). Results are 
presented in Figure 7.  
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Figure 7. The dependence of the rate of natural increase on the level of 

deprivation, i.e. on the intensity of Malthusian positive checks. 
 
The fitted straight line, represented by the eqn (6), corresponds 

to  3.9m  and 0n  . These data show that the rate of natural 
increase is also directly proportional to the level of deprivation. 

In principle, the rate of natural increase gives a better 
representation of the impacts of Malthusian positive checks 
because it is not obscured by contributions from immigrations and 
emigrations. However, by comparing Figures 6 and 7, we can see 
that the linear dependence applies to the growth rate and to the rate 
of natural increase suggesting that contributions from immigration 
and emigration are in general negligibly small. Individual points 
might be shifted but the general trend is the same. The gradients of 
the straight lines fitting the data are also similar, 4.3 for the growth 
rate and 3.9 for the rate of natural increase. It does not matter 
whether we are using growth rate or the rate of natural increase, 
results are the same: contrary to the widely accepted but erroneous 
doctrine of Malthusian stagnation, the intensified presence of 
Malthusian positive checks is correlated with the intensified 
growth of population. 

Results presented in Figures 6 and 7 are most surprising. The 
regenerating impacts of Malthusian positive checks do not just 
keep the growth rate constant – they stimulate growth and make it 
even faster. 

Devastating impacts of Malthusian positive checks are 
correlated with their regenerating impacts 

The dichotomy of Malthusian positive checks can be also 
illustrated by the correlations between their opposite impacts, i.e. 
between destructive and regenerating effects. We could study how 
various forms of mortality (adult mortality, under-five mortality, 
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maternal mortality or deaths by polluted water) are correlated with 
various forms of regenerating effects (total fertility rate, growth 
rate and the rate of natural increase). For the listed here effects we 
would have 12 such correlations. However, this study of multiple 
correlations can be reduced to a study of two types of correlations: 
(1) correlations between exponential distributions describing total 
fertility rate and various forms of mortality, and (2) correlations 
between exponential and linear distributions, with exponential 
distributions representing various forms of mortality while linear 
distributions representing growth rate or the rate of natural 
increase. As an example, we show two such correlations: (1) the 
correlation between adult mortality (exponential) and total fertility 
rate (exponential), displayed in Figure 8 and (2) the correlation 
between adult mortality (exponential) and the growth rate (linear), 
displayed in Figure 9. 

Correlations between exponential impacts 

 
Figure 8. The dichotomy of Malthusian positive checks: the increasing 
destructive impacts (mortality) are correlated with the increasing total 
fertility rate. Similar correlations exist also for under-five mortality, 

maternal mortality and deaths by polluted water. Parameters are given by 
the correlations of the LDI with adult mortality and with total fertility 

rate. 
 
As we have already seen, adult mortality and total fertility 

increase exponentially. If we represent mortality by y: 
 

rxy be        (7) 
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and fertility by z: 
 

r xz b e
 ,       (8) 

 
then the correlation between y and z is given by 
 

lnB yz Ae ,       (9) 
 
where  
 

r
B

r


                   (10) 

 
and 
 

lnB bA b e  .                (11) 
 
The eqn (9) can be also expressed as 
 
ln ln lnz A B y                  (12) 

 
Correlations between linear and exponential impacts 

 
Figure 9. The dichotomy of Malthusian positive checks: the increasing 

destructive impacts (mortality) are correlated with the increasing growth 
rate. Similar correlations exist also for under-five mortality, maternal 
mortality and deaths by polluted water as well as between the rate of 

natural increase and all these forms of mortality. Parameters are given by 
the correlations of the LDI with adult mortality and with the annual 

growth rate. 
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Correlations between the growth rate or the rate of natural 
increase and various forms of mortality also illustrate the 
dichotomy of Malthusian positive checks. As we have seen, the 
rate of natural increase and the growth rate increase linearly with 
the intensity of Malthusian positive checks while mortality 
increases exponentially. If we follow similar procedure as outlined 
earlier for the correlations between mortality and fertility, we shall 
find that  

 

ln lny b
z m n

r r

  
    

  
               (13) 

 
where z is the annual growth rate or the rate of natural increase 

and y is the mortality, which could be adult mortality, under-five 
mortality, maternal mortality or deaths by polluted water.  For the 
UNDP data (UNDP, 2011), 0n  and this formula is reduced to  

 

 ln ln
m

z y b
r

                  (14) 

 
An example of these correlations is shown in Figure 9.  As the 

intensity of the destructive effects (mortality) of Malthusian 
positive checks increases, the intensity of the regenerating effects 
also increases and is reflected in the increased growth rate or in the 
increased rate of natural increase. 

It is generally believed that Malthusian positive checks cause 
stagnation in the growth of population and in the associated 
economic growth (see for instance Artzrouni & Komlos, 1985; 
Desment & Parente, 2012; Galor, 2005a, 2011; Galor & Weil, 
1999; 2000; Guest & Almgren, 2001; Hansen & Prescott, 2002; 
Komlos, 1989; 2000; Komlos & Baten, 2003; Lagerlöf, 2003a; 
2001b; Lee, 1997; Leibenstein, 1957; McKeown, 1983; 2009; 
Nelson, 1956; Olshansky & Ault, 1986; Omran, 1971; 1983; 1998; 
2005; Robine, 2001; van de Kaa, 2010; Vollrath, 2011; Wang, 
2005; Warf, 2010; Weisdorf, 2004). The concept of Malthusian 
stagnation is at the root of the established knowledge in 
demography and in economic research, the knowledge, which is 
largely based on conjectures, impressions and even on distorted 
presentations of data (Ashraf, 2009; Galor, 2005a; 2005b; 2007; 
2008a; 2008b; 2008c; 2010; 2011; 2012a; 2012b; 2012c; Galor & 
Moav, 2002; Snowdon & Galor, 2008).  
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As discussed elsewhere (Nielsen, 2016j), the currently 
established knowledge in demography and in economic research, 
based on the concept of Malthusian stagnation, is scientifically 
unacceptable. There is now an overwhelming evidence that the so-
called Malthusian stagnation never existed in the growth of 
population and in the economic growth (Biraben, 1980; 
Clark,1968; Cook,1960; Durand, 1974; Gallant, 1990; Haub, 1995; 
Kapitza, 2006; Kremer, 1993; Lehmeyer, 2004; Livi-Bacci, 1997; 
Maddison, 2001; 2010; Mauritius, 2015; McEvedy & Jones, 1978; 
Nielsen, 2013a; 2013b; 2013c; 2014; 2015; 2016a; 2016b; 2016c; 
2016d; 2016e; 2016f; 2016g; 2016h; 2016i; Podlazov, 2002; 
Shklovskii, 1962; 2002; Statistics Mauritius, 2014; Statistics 
Sweden, 1999; Taeuber & Taeuber, 1949; Thomlinson, 1975; 
Trager, 1994; United Nations, 1973; 1999; 2013; von Hoerner, 
1975; von Foerster, Mora & Amiot, 1960; Wrigley & Schofield, 
1981). The investigation of the UNDP data (2011) contributes to 
the explanation why there was no stagnation. One of the 
contributing factors was the dichotomy of Malthusian positive 
checks. As originally noticed by Malthus and as now confirmed by 
the study of the UNDP data (UNDP, 2011) the destructive action 
of Malthusian positive checks is accompanied by their regenerating 
impacts. Destruction induces regeneration.  

Summary of the observed correlations 
Summary of the observed correlations between the Level of 

Deprivation Index (LDI) representing the intensity of Malthusian 
positive checks and a series of indicators illustrating the standard 
of living, the destructive impact of Malthusian positive checks and 
their regenerating impacts is presented in Table A1 (in the 
Appendix). This table includes also correlations between the 
destructive and regenerating impacts of Malthusian positive 
checks. 

Hunger and famines are correlated with the intensified 
growth of population 

The dichotomy of Malthusian positive checks can be also 
studied by investigating impacts of hunger. As with other, 
specifically mentioned indicators describing levels of deprivation, 
hunger is just the reflection of the whole spectrum of Malthusian 
positive checks. ‚Natural disasters, climatic shocks, conflict, and 
insecurity are major causes of hunger. But hunger’s root causes are 
tied to a lack of access by individuals to the resources they need to 
produce, sell, and buy food‛ (Sheeran, 2008, p. 180). ‚The tragic 
fact is that, although our planet produces enough food for 
everyone, one person in seven still goes to bed hungry each night. 
25,000 people die every day – including one child every 5 seconds 
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– from hunger-related causes‛ (Sheeran, 2008, p. 180). ‚The 
overall finding is that 3.1 million children younger than 5 years die 
every year from undernutrition; that is a staggering 45% of total 
child deaths in 2011‛ (Horton & Lo, 2013, p. 371). 

Hunger appears to be one of the leading causes of death in the 
world. ‚Every year over 10 million people die of hunger and 
hunger-related diseases. Nearly six million of these are children 
under the age of five; that is one child’s death approximately every 
six seconds.‛ (Gibson, 2012, p. 18). This should be compared with 
other leading causes of death in the world in 2012: ischaemic heart 
disease, 7.4 million deaths per year; stroke, 6.7 million; COPD, 3.1 
million; lower inspiratory infections, 3.1 million; trachea bronchus 
lung cancers, 1.6 million; HIV/AIDS, 1.5 million; diarrhoeal 
diseases, 1.5 million; diabetes mellitus, 1.5 million; road injury, 1.3 
million; hypertensive heart disease, 1.1 million (WHO, 2014). 

Again, it is repeatedly but erroneously claimed that lethal 
effects of hunger and famines suppress the growth of human 
population and create a stagnant state of growth. We shall 
demonstrate that such is not the case. These popular and widely-
accepted interpretations are incorrect. They are based on 
scientifically unsupported dogmas (Nielsen, 2016j). 

Evidence from Africa 
Table A2 (in the Appendix) and Figure 10 present a series of 

growth-related indicators for two groups of African countries, one 
group where hunger stress is 35% and another where hunger 
stress is less than 5%.  

Data presented in Table A2 and Figure 10 are based on the 
examination of three sources of reference (PRB, 2010; UNDP, 
2011; WFP, 2010). In Figure 10, birth and death rates are 
expressed in percent while infant mortality rate in per cent of live 
births. 

Table A2 and Figure 10 show that on average, and for these set 
of data, countries exposed to high level of hunger stress experience 
71% higher intensity of Malthusian positive checks as expressed 
by the LDI and have strongly reduced access to natural resources, 
as reflected in their ecological footprint, when compared with 
countries experiencing low hunger stress. Countries with high 
hunger stress experience 39% higher death rate and a massive 
120% higher infant mortality rate. However, for these countries, 
total fertility rate is 47% higher, birth rate is 35% higher, the rate 
of natural increase is also 35% higher and the population increase 
factor is 26% higher, all these indicators showing that the natural 
response to the lethal Malthusian checks is the increased rate of 
procreation and the intensified process of regeneration. Thus, 
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contrary to the generally accepted interpretations, hunger does not 
reduce the growth of human population but is associated with a 
faster growth. 

 
Figure 10. The dichotomy of Malthusian positive checks as reflected in 
the intensity of hunger stress. Populations suffering high hunger stress 
experience a higher death rate and a higher rate of infant mortality than 
populations experiencing a small hunger stress. However, populations 

suffering high hunger stress are also characterised by a higher total 
fertility rate, higher birth rate, higher rate of natural increase and higher 

population increase factors.  
 
It is, of course, impossible to isolate hunger as a single stress 

factor. Malthusian positive checks are interconnected. However, if 
for instance, hunger stress increases the susceptibility to infectious 
diseases, then the primary stress factor is still hunger.  

Data make it clear that in countries suffering high hunger stress 
population growth is faster than in countries experiencing 
significantly lower hunger stress. Clearly, Malthusian positive 
checks bring not only the destruction as reflected in the increased 
death tolls but also the regeneration. Furthermore, the regeneration 
process is more powerful than the process of destruction because 
the growth of population is not just at the same level as in countries 
experiencing low hunger stress but faster.    

Evidence from China 
A prominent example of devastating impacts of Malthusian 

positive checks associated with famines is China. ‚Between the 
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years 108 B.C. and 1911 AD, there were 1828 famines or one 
nearly every year in some of the provinces. Untold millions have 
died of starvation. In fact, the normal death rate may be said to 
contain a constant famine factor‛ (Mallory, 1926, p. 1). However, 
China is also an excellent example of regenerating impacts of 
Malthusian positive checks. ‚In spite of the tremendously high 
death rate, particularly of infants, due to lack of modern medical 
knowledge, in spite of the depopulating effect of terrible famines, 
and in spite of the immense loss of life caused by civil wars we 
find today a denser population on the plains than ever before; and 
since there has been no appreciable influx from other countries we 
much ascribe the present conditions to the excessive birth rate‛ 
(Mallory, 1926, p. 87).  

 
The dichotomy observed by Malthus and in nature 

While Malthus is well known for suggesting lethal effects of 
positive checks, he is not so well known for being aware of the 
existence of a competing mechanism, the mechanism of 
spontaneous regeneration and preservation of identity.  

‚The absolute population at any one period, in proportion to the 
extent of territory, could never be great, on account of the 
unproductive nature of some of the regions occupied; but there 
appears to have been a most rapid succession of human beings, and 
as fast as some were mowed down by the scythe of war or of 
famine, others rose in increased numbers to supply their place. 
Among these bold and improvident Barbarians, population was 
probably but little checked, as in modern states, from a fear of 
future difficulties (Malthus, 1798, p. 15. Italics added). 

If Malthus had access to the data available to us he would have 
probably presented a more appropriate description of people 
exposed to lethal effects of positive checks. We would be reluctant 
to describe people living in poor countries as ‚bold and 
improvident Barbarians.‛ We also would not like to use the same 
description to parents of the post-war baby boomers. 

Apart from this general observation, Malthus presents also data, 
which suggest that high-intensity positive checks are linked with 
the intensified process of regeneration (Malthus, 1798, pp. 36-40). 
He has noticed, for instance ‚that the greatest proportion of births 
to burials, was in the five years after the great pestilence‛ 
(Malthus, 1798, p. 37). He concludes that ‚Great and astonishing 
as this difference is, we ought not to be so wonder-struck at it as to 
attribute it to the miraculous interposition of heaven. The causes of 
it are not remote, latent and mysterious; but near us, round about 
us, and open to the investigation of every inquiring mind‛ 
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(Malthus, 1798, p. 40). He was convinced that these incidents of 
intensified growth, after the episodes of epidemics, were not only 
the manifestation of the natural law of growth but also that they 
should be closely examined. It is, therefore, disappointing that 
numerous scholars who refer to the work of Malthus overlooked 
his suggestion that the effects of regeneration should be further 
examined. Malthus also lists many examples of successful 
regeneration in such places as Flanders, Palestine, London, Turkey, 
Egypt, China, Naples and Lisbon (Malthus, 1798, p. 35).  

While emphasising the importance of food in supporting the 
growth of human population, he did not fail to notice that people 
can ‚live almost upon the smallest possible quantity of food‛ 
(Malthus, 1798, p. 41), which implies that hunger or famines 
should not be immediately identified as factors controlling the 
growth of population. It is incorrect to suggest that ‚Malthusian 
positive checks (mortality crises) maintained a long-run 
equilibrium between population size and the food supply‛ 
(Komlos, 1989, p. 194). It is incorrect to claim that ‚the food-
controlled homeostatic equilibrium had prevailed since time 
immemorial‛ (Komlos, 2000, p. 320). It is not immediately 
obvious the ‚Throughout human history, epidemics, wars and 
famines have shaped the growth path of population‛ (Lagerlöf, 
2003b, p. 435).  

Malthus uses China as an example where ‚the lower classes of 
people are in the habit of living almost upon the smallest possible 
quantity of food and are glad to get any putrid offals that European 
labourers would rather starve than eat‛ (Malthus, 1798, p. 41). He 
also cautions against using food as a factor controlling the growth 
of population. He points out twice in his book that in some cases 
population may ‚permanently increase without a proportional 
increase in the means of subsistence‛ (Malthus, 1798, pp. 41, 43). 
Furthermore, he points out that there could be ‚some variations in 
the proportion between the number of inhabitants and the quantity 
of food consumed, arising from the different habits of living that 
prevail in each state‛ (Malthus, 1798, p. 42). Food consumption is 
not proportional to the size of population. The relation between 
food consumption and the growth of population is not immediately 
obvious. 

Malthus placed a significant emphasis on the role of positive 
checks but he also made an attempt to present a balanced 
interpretation of growth, a balanced view which is conspicuously 
missing in the numerous publications referring to Malthus and 
describing erroneously the effects of Malthusian positive checks as 
Malthusian stagnation. While making attempts to praise Malthus 
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for his work such publications are in fact diminishing the 
importance of his contribution.  

His early observations, combined with the vast body of data 
available now to us, help to understand the mechanism of growth 
of human population. It is a process, which can be influenced by 
the devastating impacts of Malthusian positive checks but also a 
process, which is influenced by their regenerating impacts. 

The phenomenon of regeneration noticed and recorded by 
Malthus is similar to the well-known process observed in nature. It 
is the natural and spontaneous process of self-preservation of living 
organisms triggered by stressful conditions. It is the resilience of 
ecological systems (Holling, 1973). There are numerous examples 
and definitions of this omnipresent phenomenon.  

According to Cumming et al. (2005, p. 976), resilience is ‚the 
ability of the system to maintain its identity in the face of internal 
change and external shocks and disturbances.‛ The definition 
proposed by the National Research Council (NRC) is ‚the 
continued ability of a person, group, or system to adapt to stress – 
such, as any sort of disturbance – so that it may continue to 
function, or quickly recover its ability to function, during and after 
stress‛ (NRC, 2011, pp. 13, 14). ‚Resilience is the ability to handle 
stresses or recover from disturbances or shocks‛ (Bapna, McGray, 
Mock & Withey, 2009, p. 3). ‚In general, resilience refers to a 
system’s capacity to deal with change and to continue to develop‛ 
(Boyd, et al., 2008, p. 391). There are also many other definitions 
of resilience, all describing either the ability of a quick and 
efficient recovery or the ability to cope with stress. 

Malthus noticed the existence of this mechanism of 
regeneration. This process is also well known in science but for 
reasons, which are hard to understand, it is overlooked in 
publications based on the erroneous assumption of the existence of 
the epoch of Malthusian stagnation. While repeatedly describing 
the lethal effects of Malthusian positive checks, a balanced 
interpretation suggested originally by Malthus is missing. 

 
Summary and conclusions 

Using the UNDP data (UNDP, 2011), we have investigated 
impacts of Malthusian positive checks. We have assumed that a 
convenient way of measuring the intensity of Malthusian positive 
checks is to use the Level of Deprivation Index (LDI), which we 
defined using the well-known Human Development Index (HDI). 
This approach allows not only for studying impacts of Malthusian 
positive checks but also for describing them mathematically. Our 
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empirical formulae are simple but mathematical formulae do not 
have to be complicated to be useful.  

First, we have investigated how the intensity of Malthusian 
positive checks is reflected in the standard of living as represented 
by the ecological footprint (EF), income per capita, (GDP/cap), 
levels of severe poverty, access to clean water and access to 
sanitation facilities. We have found that the ecological footprint 
(EF) decreases hyperbolically with the intensity of Malthusian 
positive checks while the GDP/cap decreases exponentially. We 
have also found that severe poverty, inadequate access to clean 
water and to sanitation facilities depend linearly on the intensity of 
Malthusian positive checks. However, we have also found that 
these linear correlations are characterised by certain thresholds.  

Thus, our analysis indicates that severe poverty can be 
eliminated without the necessity of reducing the intensity of 
Malthusian positive checks or equivalently the levels of 
deprivation to zero or close to zero. The level of the severe poverty 
reaches its zero value at a certain threshold of the intensity of 
Malthusian positive checks. A significant reduction in the level of 
severe poverty can be achieved by only a relatively small increase 
in the average income per capita in poor countries.  

We have investigated the lethal effects of Malthusian positive 
checks and we have found that mortality increases exponentially 
with the increasing level of deprivation, i.e. with the increasing 
intensity of Malthusian positive checks. However, we have found 
that total fertility rate also increases exponentially with the 
increasing intensity of Malthusian positive checks. 

One of the important results of our analysis is that the growth 
rate increases with the intensity of Malthusian positive checks. The 
rate of natural increase also increases. The larger is the intensity of 
the destructive impacts of Malthusian positive checks, the faster is 
the growth of population. The destructive impacts of Malthusian 
positive checks are not just balanced by their regenerating process 
– they stimulate an even faster growth. These results suggest that 
the essential step in controlling the growth of population is to 
reduce the levels of severe poverty. Helping poor countries to help 
themselves is not an option. 

We have also investigated correlations between destructive and 
regenerating impacts of Malthusian positive checks and again we 
have derived simple mathematical formulae describing these 
correlations. We have demonstrated that the intensity of the 
regenerating process increases with the increasing intensity of the 
destructive process of Malthusian positive checks. We have 
derived a general formula showing how the total fertility rate 
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increases with the increasing mortality. We have also derived a 
simple mathematical formula showing how the rate of natural 
increase and the growth rate increase with the increasing mortality. 
We have presented diagrams for the adult mortality but the same 
formulae apply also to other forms of mortality such as maternal 
mortality, under-five mortality and the mortality caused by 
polluted water.  

Our investigation shows that contrary to the interpretations 
based largely on intuition and impressions, growth of population is 
not controlled by the increased mortality. On the contrary, the 
increased mortality stimulates growth. Our study suggests that in 
order to have better control of the growth of human population, 
levels of deprivation experienced by poor countries should be 
significantly reduced. The first and the essential step is to improve 
the economic status of these countries. However, helping poor 
countries to increase their income per capita is only a partial 
solution. This step should be accompanied by making a wider 
range of accessible options such as options for education and 
employment available to people living in poor countries. The 
improvement of economic status should also go hand in hand with 
the improvement in gender equality, which will facilitate better 
family planning. Only by improving the living conditions of poor 
countries we can hope to have a better, long-term, control of the 
growth of human population and of its stabilization. Successful 
control of the growth of human population is essential for 
controlling our ever-increasing ecological footprint (Ewing, et al., 
2010;  WWF, 2010) and for finding at least some solutions to the 
current critical trends shaping the future of our planet  (Nielsen, 
2006). 
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Appendix 
Table A1. Mathematical dependence of listed indicators (y) on x = 
LDI (the intensity of Malthusian positive checks) with the 
corresponding parameters describing the UNDP data (UNDP, 2011). 
The table includes also two types of correlations between destructive 
and regenerating impacts. 

Indicator Formula Parameters 
Standard of living   
Ecological footprint (EF)  1 axy  a = 0.646 

GDP/cap  rxy be  b = $71,144, r = -6.97 

Population in severe poverty  ( )y m x n   m = 190, n = 0.358 

Population below the poverty line  ( )y m x n   m = 195, n = 0.308 

Multidimensional Poverty Index  ( )y m x n   m = 1.23, n = 0.293 

Pop. with no access to clean water  ( )y m x n   m = 175, n = 0.371 

Pop. with no access to san. facilities  ( )y m x n   m = 220, n = 0.327 

Lethal impacts of positive checks   
Deaths due to polluted water  rxy be  b = 5, r = 9 

Maternal mortality  rxy be  b = 3.58, r = 8.59 

Under-five mortality  rxy be  b = 2.4, r = 6.7 

Adult mortality  rxy be  b = 62.42, r = 2.93 

Regeneratingimpacts   
Total fertility rate rxy be  b = 1, r = 2.6 

Growth rate  ( )y m x n   m = 4.3, n = 0 

Rate of natural increase (RNI)  ( )y m x n   3.9m  , 0n   

Regenerating vlethal impacts   
Total fertility rate (z) v mortality (y)  ln ln lnz A B y   eqns (7) – (12) 

Growth rate or RNI (z) v mortality (y)  ln ln
m

z y b
r

   
eqn (13) 
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Table A2. The dichotomy of Malthusian positive checks reflected in the 
contrasting levels of hunger stress 
  Destruction Regeneration 
Country LDI DR IM TFR BR RNI PIF 

Hunger Stress: ≥ 35%       
Angola 0.514 15 102 2.7 43 2.8 2.4 
Burundi 0.684 10 66 6.4 42 3.2 2.7 
Chad 0.672 16 125 6.0 45 2.9 2.4 
CARent. Afr.  
Rep. 

0.657 15 102 4.7 37 2.1 2.1 
DRCongo 0.714 17 111 6.1 45 2.8 2.2 
Eritrea 0.651 8 43 4.7 34 2.6 1.9 
Ethiopia 0.637 10 77 5.3 37 2.7 2.0 
Malawi 0.600 15 84 5.7 42 2.7 2.4 
Mozambique 0.678 14 86 5.6 41 2.8 2.6 
Sierra Leone 0.674 15 89 5.0 37 2.2 2.5 
Zambia 0.570 15 84 6.3 46 3.1 3.3 
Average Values 0.641 13.6 88.1 5.3 40.8 2.7 2.4 
Hunger Stress:     < 5%       
Algeria 0.602 5 22 2.3 19 1.5 1.3 
Egypt 0.356 5 23 2.9 25 2.0 1.5 
Gabon 0.326 9 45 3.4 27 1.8 1.8 
Libya 0.240 4 14 2.5 22 1.8 1.4 
Morocco 0.418 6 30 2.2 19 1.3 1.2 
South Africa 0.381 14 48 2.4 21 0.6 1.1 
Tunisia 0.302 6 18 2.1 18 1.2 1.2 
Average Values 0.375 9.8 40.0 3.6 30.2 2.0 1.9 
Ratio 1.71 1.39 2.20 1.47 1.35 1.35 1.26 

LDI – Level of Deprivation Index; DR – Death Rate; IMR – Infant 
Mortality Rate; TFR – Total Fertility Rate; BR – Birth Rate; RNI – Rate 
of Natural Increase; PIF – Population Increase Factor; CAR – Central 
African Republic; DRC – Demographic Republic of Congo; Ratio – 
High stress/Low stress.  
Death and birth rates are per 1000 of the population. Infant Mortality 
Rate is defined as ‚The annual number of deaths of infants under age 1 
per 1,000 live births‛ (PRB, 2010). The Rate of Natural Increase is in 
percent. Population Increase Factor gives the projected population in 
2050 as a multiple of the population in 2011.  
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4. Demographic catastrophes did not shape 
the growth of human population 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
emographic catastrophes were supposed to have shaped the 
growth of human population and indirectly also the 
economic growth because as indicated by Maddison’s data 

(Maddison, 2001; 2006; 2010) these two processes are strongly 
correlated. Demographic catastrophes were supposed to have been 
responsible for creating the supposed, but non-existent, epoch of 
Malthusian stagnation in the growth of population and in the 
associated economic growth. This concept, which was accepted for 
decades in the demographic and economic research, has been 
recently reinforced by Galor and his associates by the deliberately 
distorted presentation of data (Ashraf, 2009; Galor, 2005a; 2005b; 
2007; 2008a; 2008b; 2008c; 2010; 2011; 2012a; 2012b; 2012c; 
Galor & Moav, 2002; Snowdon & Galor, 2008). We have 
discussed these issues in earlier publications and we have shown 
that precisely the same data, which were used in their distorted way 
by Galor and his associates to support their preconceived but 
erroneous ideas, are in fact in the direct contradiction of the 
concept of Malthusian stagnation (Nielsen, 2014; 2016a; 2016b; 
2016c; 2016d; 2016e; 2016f; 2016g; 2016h).  

The erroneous concept of Malthusian stagnation and takeoffs 
from the supposed but non-existent Malthusian trap in the 
demographic and economic growth is based on the incorrect 
interpretations of hyperbolic distributions. They are indeed slow 
over a long time and fast over a short time but they increase 
monotonically and there is no place on them where they change 
suddenly from being slow to being fast. In order to explain the 
mechanism of hyperbolic growth, hyperbolic distributions have to 

D 
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be treated as a whole. They cannot be divided into two or three 
different regimes of growth as incorrectly imagined by Galor 
(2005a; 2011) and by many other researchers. 

In the discussion presented here we shall extend our earlier 
discussions of the growth of human population by concentrating 
our attention on the possible impacts of demographic catastrophes. 
We have already explained (Nielsen, 2016i) that in harmony with 
the observation published by Malthus (1798), his positive checks 
(demographic catastrophes and harsh living conditions) have a 
dichotomous effect on the growth of population: they are 
destructive by increasing the death toll but they are also 
constructive by triggering the process of regeneration. In the 
discussion presented here we are going to demonstrate that there is 
also another reason why demographic catastrophes did not shape 
the growth of human population: they were generally too weak to 
have any tangible impact. They might have been strong enough to 
upset the growth of some local populations but with only one 
exception discussed earlier (Nielsen, 2016j) when there was an 
unusual convergence of five remarkably strong demographic 
catastrophes, they had no effect on the growth of global population, 
or even on the growth of regional populations (Nielsen, 2016d). 
 

The supposed age of pestilence and famine 
In one of his publications, Lagerlöf stated that ‚Throughout 

human history, epidemics, wars and famines have shaped the 
growth path of population‛ (Lagerlöf, 2003a, p. 435). He studied 
the growth of population in England, France and Sweden using his 
model of growth, which incorporated the concept of Malthusian 
stagnation. Similar calculations were carried out earlier by 
Artzrouni & Komlos (1985) for the world population. These two 
studies are most interesting because when closely examined they 
show that the mechanism of stagnation does not produce expected 
results (Nielsen, 2016k). They did not produce a stagnant state of 
growth. Lagerlöf missed the opportunity of seeing it because he did 
not compare his model calculations with data. Artzrouni & Komlos 
(1985) produced a distribution for the growth of the world 
population but did not notice that their model generated 
exponential growth with no signs of stagnation. Furthermore, their 
results are contradicted by data (Nielsen, 2016k) because the world 
growth of population was never exponential (Nielsen, 2016d; 
2016j). 

Lagerlöf carried out Monte-Carlo calculations, which were 
supposed to confirm the existence of the epoch of Malthusian 
stagnation in the growth of population supposedly caused by the 
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effects of demographic catastrophes, such as epidemics, wars and 
famines. He incorporated explicitly the mechanism of stagnation in 
his model. Consequently, his model should have been expected to 
produce the process of stagnation but it did not. Before the 
publication of Lagerlöf’s paper, data for the United Kingdom, 
France and Sweden were already available (Maddison, 2001) but 
unfortunately Lagerlöf did not compare his model-generated 
calculations with these most essential data.  

These data are shown in Figure 1. Their analysis demonstrates 
that data for the UK and France follow hyperbolic trajectories. For 
Sweden, there was a change from a hyperbolic distribution to 
exponential growth. All these data and their analysis demonstrate 
that there was no stagnation in the growth of population and that 
contrary to the original assumption of Lagerlöf, ‚epidemics, wars 
and famines‛ did not shape ‚the growth path of population‛. The 
past growth may have been slow but it was not stagnant. It was 
slow because it was hyperbolic. It then became fast because it was 
hyperbolic. Only in Sweden it was diverted to a faster new 
trajectory but it was not a transition from stagnation to growth but 
a transition from growth to growth, from a hyperbolic growth to an 
exponential growth. 

 
Figure 1. Population growth in the United Kingdom, France and Sweden. 

Data (Maddison, 2001) are compared with hyperbolic distributions. 
Population growth was increasing monotonically. It was slow in the past 
because it was hyperbolic. For Sweden, there was a change from a slow 

hyperbolic growth to a faster exponential growth around AD 1600. There 
was no stagnation. The growth of population was not shaped by 

demographic catastrophes, as claimed by Lagerlöf (2003a). 
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For France, the growth of population was following closely 
hyperbolic distribution at least until around 2000. For the United 
Kingdom, the growth was hyperbolic until around 1820, when it 
started to be diverted to a slower trajectory. According to the 
generally accepted interpretations of the mechanism of the growth 
of human population, we should expect a significant boosting 
(takeoff or explosion) around the time of the Industrial Revolution, 
1760 and 1840, (Floud & McCloskey, 1994). This takeoff should 
be clearly indicated in the United Kingdom, the very centre of this 
revolution, where its impacts should have been most clearly 
demonstrated. The takeoff did not happen. On the contrary, in the 
direct contradiction of these usually claimed expectations, the 
growth of population in the UK started to be diverted to a slower 
trajectory at around 1820, right at the time when it was supposed to 
have been boosted. 

In Sweden, the growth of population was boosted but it was 
boosted at a wrong time, around AD 1600, i.e. well before the 
Industrial Revolution. The boosted growth follows an exponential 
trajectory, as indicated by the straight line in this semi logarithmic 
display. 

Hyperbolic distributions displayed in Figure 1 are described by 
the following simple equation: 

 
1

( )S t
a kt




,        (1) 

 
where ( )S t is the size of the population, t is time, while a and k are 
the parameters determined by fitting hyperbolic distributions to 
data. 

For the hyperbolic distributions displayed in Figure 1, 
parameters are: 31.221 10a   and 76.511 10k   for the UK, 

42.085 10a   and 89.635 10k   for France and 34.935 10a  

and 62.221 10k   for Sweden. 
Exponential distribution describing the growth of population in 

Sweden from AD 1600 is given by the following equation: 
 

( ) rtS t be ,        (2) 
 

with parameters 25.798 10b   and 35.973 10r   . From AD 1600, 
population in Sweden was increasing at an approximately constant 
rate of 0.6%. Just before the transition to this new trend, the growth 
rate for the preceding hyperbolic distribution was only 0.16%. The 
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new exponential trajectory was approximately 3.7 times faster than 
the preceding hyperbolic trajectory at the time of the transition.  

Hyperbolic growth is often described as ‚faster-than-
exponential‛ or ‚hyper-exponential‛. Such descriptions should be 
avoided. They are inaccurate and misleading. The concept of the 
faster-than-exponential growth was introduced, or at least strongly 
promoted, by Bartlett (1993). However, he has readily admitted 
that he was wrong: ‚Thanks for your thoughtful analysis of my 
writing about faster and slower than exponential. You are 
right!  My wording is unclear and confusing and wrong. I have 
used these terms for years and you are the first person to point out 
this error to me‛ (Bartlett, 2011). If only the erroneous concepts 
adopted in the economic and demographic research could be so 
readily corrected, we would see progress in these two fields of 
study, rather than the existing and long-lasting stagnation. 

In the example presented in Figure 1, exponential growth in 
Sweden after around AD 1600, is faster than the preceding 
hyperbolic growth and thus, in this case, hyperbolic growth (the so-
called ‚faster-than-exponential‛ growth) is in fact slower than 
exponential. 

We can only compare specific distributions and see which of 
them are faster or slower. Faster-than-exponential distributions do 
not exist because we can always design exponential growth, which 
over a certain time will be faster than some other incorrectly 
claimed faster-than-exponential growth. 

If we have to use the expression ‚faster-than-exponential‛ we 
have to be specific. We have to describe clearly, which specific 
distributions are being compared and over specifically what range 
of the independent variable. Thus, for instance, for the distributions 
shown in Figure 1 for Sweden we could say that over the range of 
the displayed time, the exponential growth, which commenced in 
1600 was faster than the preceding hyperbolic growth. However, 
we obviously cannot claim that the hyperbolic growth before 1600 
was ‚faster-than-exponential‛ or ‚hyper-exponential‛ because we 
have already demonstrated that in this particular case this so called 
‚faster-then-exponential‛ or ‚hyper-exponential‛ growth was 
obviously slower than the exponential growth, which replaced this 
hyperbolic growth.  

Lagerlöf did not invent the concept of Malthusian stagnation, 
which is supposed to be caused by the lethal effects of 
demographic catastrophes. He just accepted it without any 
criticism maybe because going with the flow increases the chance 
of publishing new results. When in one of his papers, published 
also in 2003, Lagerlöf was associating the hypothetical epoch of 
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Malthusian stagnation with ‚epidemic shocks‛ he was quickly 
corrected by a referee for missing the effects of wars: ‚As 
suggested by a referee, this process could possibly be interpreted in 
terms of wars, instead of epidemics‛ (Lagerlöf, 2003b, p. 766).  

Both, Lagerlöf and his referee were wrong. The process of 
Malthusian stagnation cannot be interpreted ‚in terms of wars, 
instead of epidemics‛ because as shown by data presented in 
Figure 1, Malthusian stagnation did not exist. However, neither 
Lagerlöf nor his referee cared to consult the relevant data. Data 
appear to be of lesser importance than the mantra of stagnation.  

Unfortunately, this mantra is repeated without any convincing 
justification in the economic and demographic research, and every 
effort is made to make sure that it is repeated faithfully and as 
required. As mentioned earlier, Lagerlöf did not compare his 
model-calculations with data, but his referee was also misguided 
because the doctrine of Malthusian stagnation is repeatedly 
contradicted by data (Nielsen, 2016a; 2016d; 2016j). 

According to the established knowledge in demography and in 
economic research, ‚The age of pestilence and famines lasted until 
1875‛ (Rogers & Hackenberg, 1987, p. 234) when there was 
supposed to have been a transition from stagnation to a fast growth, 
the transition described usually as a takeoff or explosion. It is 
unclear how this precise date was determined but it might have 
been suggested by the generally accepted but erroneous notion of 
the supposed transition from stagnation to growth around the 
Industrial Revolution, 1760 and1840 (Floud & McCloskey, 1994). 
Analysis of data shows convincingly that there was no stagnation 
in the growth of population and in the economic growth, and that 
there was no transition, which could be described as a takeoff or 
explosion. What is interpreted as an explosion is just the natural 
continuation of hyperbolic growth (Nielsen, 2016a; 2016d; 2016j). 

The mythical age of pestilence and famines was supposed to 
have been characterised by what is known as Malthusian 
oscillations. According to this doctrine ‚…periodic epidemics of 
plague, cholera, typhoid and other infectious diseases would in one 
or two years wipe out the gains made over decades. Over long 
periods of time there would, consequently, be almost no population 
growth at all‛ (van de Kaa, 2010, p. 87). ‚The pattern of growth [of 
human population] until about 1650 is cyclic‛ (Omran, 1971, Table 
4, p. 533). Here we have a different date for the termination of the 
age of pestilence and famine, which is hardly surprising because 
these dates are based on impressions combined with a good dose of 
imagination. The age of pestilence and famine, with its assumed 
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strong effects on the growth of population and on the economic 
growth, did not exist.  

The supposed, but non-existent, transition from stagnation to 
growth was supposed to have been associated with the transitions 
in the birth and death rates. It is interesting, however, that while 
Omran shows examples of the claimed transitions in birth and 
death rates, his examples (for Sweden, England, Japan, Ceylon and 
Chile) show clearly and convincingly that these transitions had 
absolutely no impact on the growth of population (Omran, 2005).  

Changes in birth and death rates are not necessarily reflected in 
changes in the growth of population. The growth of population is 
not determined by the birth and death rates alone but the average 
difference, i.e. by the average gap, between these two quantities. 
Birth and death rates might be changing from high to low but such 
changes will not be reflected in the growth of population unless the 
average difference between them is also changing. Furthermore, 
small changes in the difference between birth and death rates are 
also not reflected as the associated changes in the growth of 
population (Nielsen, 2016l). 

Birth and death rates might be decreasing but if they are 
decreasing in such a way that the average difference between them 
is approximately constant, the growth of population will be 
approximately exponential. If the difference increases 
systematically, then the growth of population will be described by 
a non-exponential trajectory. For instance, if the difference 
increases, on average, hyperbolically, then the growth of 
population will be hyperbolic.  

To produce stagnation, the average difference between birth and 
death rates has to be approximately zero. To produce a stagnant but 
slowly increasing population, the average difference between birth 
and death rates would have to be changing in a very specific and 
complicated way. It would have to be on average zero over a long 
time but then it would have to be on average non-zero to generate 
growth. Then again it would have to revert back to zero to produce 
stagnation. This process would have to be repeated over a long 
time for thousands of years. We do not have data to demonstrate 
that such a process ever existed. We do not have data for birth and 
death rates extending over thousands of years. The claim that birth 
and death rates were high and that they were producing stagnation 
is unscientific because we do not have data to prove it. However, 
we have a large body of data describing the growth of population 
and we can show that the growth of population was in general 
hyperbolic, which by inference means that the average difference 
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between birth and death rates was increasing hyperbolically. There 
was no stagnation.  

To demonstrate a dramatic change from stagnation to growth in 
the growth of population we would have to demonstrate that there 
was a dramatic change in the average difference between birth and 
death rates from zero to a clearly and systematically larger value, 
and it does not matter whether birth and death rates were 
decreasing or increasing. What determines the growth of 
population is the average difference between birth and death rates. 

If we want to claim some kind of transitions in birth and death 
rates, there is nothing to stop us from doing it. However, we should 
remember that, in general, such studies will not help us to 
understand the mechanism of growth of population. They might be 
interesting and stimulating for another reason but unless we pay 
close attention to how the difference between these two quantities 
is changing, how large or how systematic are these changes, and 
how these changes can be explained, we shall not explain the 
mechanism of growth of human population. We also should 
remember that only significant changes in the difference between 
birth and death rates are reflected as changes in growth trajectories. 

The frequently used example in support of the concept of 
stagnation followed by explosion is the growth of population in 
Sweden between around AD 1750 and 2000. It shows changes in 
the difference between birth and death rates but no-one seems to 
have noticed that these changes are relatively small. Furthermore, 
no-one seems to have noticed that these small changes are not 
reflected in the growth of population, even though data for the birth 
and death rates and for the growth of population come from exactly 
the same source (Statistics Sweden, 1999). These data are 
selectively and consistently ignored in order to preserve the perfect 
intonation of the mantra of Malthusian stagnation. 

Small changes in the average values of birth and death rates are 
repeatedly but incorrectly interpreted as a proof of the existence of 
the epoch of Malthusian stagnation and of a transition from 
stagnation to growth while data presented in the same primary 
source show clearly that the growth of population in Sweden was 
increasing monotonically without any signs of stagnation and 
without any sign of a transition from stagnation to growth. These 
issues were discussed earlier (Nielsen, 2016l). 

Demographic research concentrating on the study of birth and 
death rates might be important but it is incorrect to think that such 
a research can be necessarily useful for explaining the mechanism 
of growth of human population. The two mechanisms are related 
only via the average difference between birth and death rates. 
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There might be strong fluctuations in birth and death rates but 
these fluctuations are generally not reflected in the growth of 
population. They might be reflected only as minor variations in the 
growth trajectory describing the growth of population. 

In conformity with the established knowledge, Komlos claimed 
that ‚Malthusian positive checks (mortality crises) maintained a 
long-run equilibrium between population size and the food supply‛ 
(Komlos, 1989, p. 194). Here we have a hinted link to the specific 
type of demographic catastrophes: famines. He also claimed that 
‚the food-controlled homeostatic equilibrium had prevailed since 
time immemorial‛ (Komlos, 2000, p. 320). Komlos appears to 
have been guided by the generally accepted consensus. However, 
science never relies on any generally accepted consensus. It is not 
unusual in science to show that the generally accepted consensus is 
scientifically unacceptable.  

The postulate of Malthusian stagnation in the economic growth 
and in the growth of human population, as well as all other related 
postulates, are scientifically unacceptable. because they are 
systematically contradicted by data (Nielsen, 2014; 2016a; 2016b; 
2016c; 2016d; 2016e; 2016f; 2016g; 2016h; von Foerster, Mora & 
Amiot, 1960). Growth of population, global or regional, was 
hyperbolic, (Nielsen, 2016d; 2016j; von Foerster, Mora & Amiot, 
1960). Economic growth was also hyperbolic (Nielsen, 2016a).  

In the case of the growth of human population we can extend 
our study to 10,000 BC. It is remarkable, that over the past 12,000 
years the growth of population was not only hyperbolic but also 
exceptionally stable (Nielsen, 2016j) because over this long time 
there was only one major transition around AD 1 from a fast to a 
slow hyperbolic trajectory. There was also another but only minor 
transition around AD 1300 from a slower to a slightly faster 
hyperbolic growth. Currently we are experiencing a new transition 
to a yet unknown trajectory but the growth is still close to the 
historical hyperbolic trajectory. 

We can extend the analysis of the growth of population even 
further, over the past 2,000,000 years and show that the growth 
was hyperbolic (Nielsen, 2017). There is nothing in the data to 
support the claim that ‚Throughout human history, epidemics, wars 
and famines have shaped the growth path of population‛ (Lagerlöf, 
2003a, p. 435). 

We already know that Malthusian positive checks, which 
include demographic catastrophes, trigger the process of 
regeneration (Malthus, 1798; Nielsen, 2016i). This process alone, 
explains the remarkable stability of the growth of human 
population. However, in order to understand even better why 
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demographic catastrophes had generally no impact on the growth 
of population we shall now investigate their relative intensity and 
other parameters defining their possible impact. 

 
Preliminary remarks 

Impacts of demographic catastrophes depend on the death toll, 
their duration and on the size of population. Death toll for a given 
demographic event might be high but to understand its impact we 
have to express it as the relative impact by comparing the death toll 
with the size of population, which could be the size of local 
population directly affected by a demographic crisis or it could be 
the size of a regional or global population, depending on whether 
we are interested in the study of local, regional or global impacts.  

Impacts of demographic catastrophes depend also on the 
historical time. In the distant past, when the population was small, 
local impacts of demographic catastrophes could be large. 
However, people were living in greater isolation so the global or 
even regional impacts could have been small. Likewise, at the 
other end of the historical time scale, when the population 
increased to a certain large size, relative impacts were small even if 
the number of people killed by a given demographic catastrophe 
was large. It can be, therefore, expected that there is only a 
relatively small window of time, mainly during the AD era until 
around 1800, when the global population reached its first billion, or 
maybe until around 1900, that the demographic catastrophes could 
have had a noticeable impact on the growth of population. 
However, the study of human population shows that in general 
they had no damaging impact, with the exception of the already 
mentioned minor disturbance around AD 1300 (Nielsen, 2016j).   

The further we go back in time with our investigation the less 
we know about the intensity of demographic catastrophes but we 
have enough information for the AD era to assess their possible 
impacts. 

In order to understand human population dynamics, it is 
essential to identify the main and the most obvious driving force of 
growth and add to it any other force or forces only if the assumed 
main force cannot explain growth. The fundamental force of 
growth of human population is obviously the force of procreation 
expressed as the difference between the biologically-controlled 
force of sex drive and the biologically-controlled process of aging 
and dying. This force cannot be dismissed and it turns out that this 
force alone explains why the spontaneous and unconstrained 
growth of human population is hyperbolic and why for the most 
part of the past human history it was hyperbolic (Nielsen, 2016m).  
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In the past 12,000 years, other forces were playing a significant 
role only during the major demographic transition around AD 1 
and during the minor transition around AD 1300. They are also 
strong and active during the current transition. With the exception 
of these rare events, the growth was hyperbolic in the past 12,000 
years. Furthermore, with the exception of the minor disturbance 
around AD 1300, there is no evidence that demographic 
catastrophes were ever shaping the growth of human population 
(Nielsen, 2016d; 2016j).  

It should be also noted that the recorded impacts of 
demographic catastrophes are likely to be exaggerated. Recorded 
death rates ‚are largest when the supporting evidence is skimpiest. 
When data are better, the death rates are usually lower and the 
percentage increases less‛ (Watkins & Menken, 1985, p. 651). For 
instance, both Durand (1960) and Fitzgerald (1936; 1947) claim 
that impact of the An Lu-Shan Rebellion (AD 756-763) is probably 
exaggerated. Likewise, Russel (1968) and Twigg (1984) believe 
that the number of casualties caused by the Justinian Plague (AD 
541-542) is also grossly overestimated.  

Another example is the Antonine Plague (AD 166-270), which 
was first estimated to have killed about 50% of the population of 
the Roman Empire (Seeck, 1921). However, this estimate was later 
downgraded to 1-2%, or to the total number of casualties of 
500,000-1,000,000 (Gilliam, 1961) and then upgraded to 7-10% or 
to a maximum of 5 million (Littman & Littman, 1973), the last 
estimate being still significantly smaller than the original estimate. 
It appears that the further back in time we go the larger is the 
possibility of exaggerated claims of the number of casualties.     

We shall describe demographic catastrophes in the way they are 
reported in the literature. However, labelling them with just a 
single cause might not be accurate. For instance, a war considered 
as the main cause of a crisis might include famine but famine 
might be linked with pestilence. For example, during the Madras 
famine in the 1870s, about 40% of casualties were caused by 
smallpox and cholera (Lardinois, 1985). The Justinian Plague was 
also accompanied by smallpox, diphtheria, cholera and influenza 
(Shrewsbury, 1970) and was ‚perhaps aided by wars, famines, 
floods and earthquakes‛ Scott & Duncan (2001, p. 5). Likewise, ‚a 
number of epidemics in France were preceded by famine, 
sometimes in conjunction with bad weather conditions‛ (Scott & 
Duncan, 2001, p. 105) whereas ‚frequent and virulent outbreaks in 
France during 1520-1600 were accompanied by food shortages, 
famines, flooding, peasant uprisings and religious wars‛ (Scott & 
Duncan, 2001, p. 291). 
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While drawing from primary sources about the frequency and 
intensity of demographic catastrophes, the presented here survey 
has been also assisted by some useful compilations (Austin 
Alchon, 2003; Kohn, 1995; Spignesi, 2002; White, 2011).  

 
Examples of prominent demographic catastrophes 

One of the earliest recorded devastating plagues was the Asiatic 
disease identified now as tularaemia, a bacterial disease caused by 
Francisella tularensis, first recorded around the early 1700s BC. It 
spread over a large area between Cyprus and Iraq and between 
Palestine and Syria. This disease appears to be also the first 
recorded example of the use of biological weapon when it was 
introduced deliberately to Anatolia (Trevisanato, 2004; 2007). The 
same disease has been also probably recorded in the Bible as 
causing a great number of deaths among Philistines in the city of 
Ashdod, the event dated either to around 1000 BC (Khan, 2004) or 
to 1320 BC (Cunha & Cunha, 2006).  

Early recorded plagues include also a viral haemorrhagic fever 
in Egypt between 1500-1350 BC (Duncan & Scott, 2005) but it 
might have been the same disease as recorded earlier in Egypt and 
the same plague that decimated Philistines.  Incidentally, Duncan 
& Scott (2005) claim that Black Death was not a bubonic plague 
caused by bacterium Yersinia pestis, as traditionally claimed, but 
rather that is was a viral haemorrhagic fever, which according to 
them includes also the plagues of Mesopotamia (700-350 BC), the 
Plague of Athens (430-427 BC), the Plague of Justinian (AD 541-
542), Plagues of Islam (AD 627-744), plagues in Asia minor 
(1345-1348), and the plague of Denmark and Sweden (1710-1711).  

The epidemic of Athens (460-399 BC) is claimed to have killed 
25% of Athenian army and a great number of civilians (Austin 
Alchon, 2003). It created a turning point in the history of Greece 
(Ross, 2008). It is also claimed that this plague killed 50% of the 
army of Pericles and 50% of the navy coming to the rescue from 
Piraeus (Beran, 2008). The plague was triggered by the 
overcrowding of Athens when Spartan’s attacks prompted rural 
population to seek shelter in that city, which was already housing a 
relatively large number of people, an estimated 300,000 citizens 
and around 3 million slaves.  

The earliest large demographic catastrophe in the AD era 
appears to have been associated with the Red Eyebrows Revolt, 
which commenced around AD 2. The estimated size of Chinese 
population at that time is claimed to have been 59.6 million but it 
might have been reduced to 21 million in AD 57 (Durand, 1960). 
However, Durand also discusses possible inaccuracies in these 
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estimates and presents corrected numbers of 74 million in AD 2 
and 45 million in AD 88, for the entire Chinese Empire. He also 
estimates 71 million and 43 million, respectively, for the China 
proper (Durand, 1960, p. 221). By China proper he means the 
current 18 provinces. He uses this estimate in his graph (Durand, 
1960, p. 247). In both cases, the relative death toll is approximately 
39% of the original population in China but only a maximum of 
12% of the global population, too weak to produce any noticeable 
impact. 

The Red Eyebrows Revolt and the associated dramatic decrease 
in the size of population in China was in the middle of a massive 
demographic transition, one and only major demographic transition 
in the past 12,000, a transition from a fast to a slow hyperbolic 
trajectory, the transition which lasted for approximately 1000 
years. This transition is shown in Figure 2. The dramatic event in 
China had no impact on the growth trajectory of the world 
population.  

Durand points out also that estimates of the size of the 
population at the time of demographic catastrophes might be 
inaccurate. ‚Even if such huge loss were conceivable, it would be 
naïve to suppose that accurate count of the survivors could have 
been carried out in the midst of the ensuing chaos‛ (Durand, 1960, 
p. 224). White (2011) attributes only 10 million of casualties to the 
Red Eyebrows Revolt.  However, to estimate the impact of this 
demographic catastrophe we shall use the revised estimate of 
Durand (1960) representing the total death toll of 29 million over 
87 years.  

Similar uncertainty in the estimated death toll applies also to the 
An Lu-Shan Rebellion (AD 756-763). Acceptable records appear 
to show the death toll of 36 million but White (2011) attributes 
only 13 million.  

Between A.D. 705 and 755 to all appearances the census 
machinery functioned much more effectively; but after 755 
it broke down again. The recorded number of persons 
dropped from nearly 53 millions in the year 755 to only 17 
millions in 760. During this time, China was torn by revolts 
which were suppressed with bloody force, including the 
notorious rebellion of An Lu-Shan. Many historians have 
affirmed that 36 million lives were lost as a result of these 
violent events, but Fitzgerald and others have shown that 
this is incredible (Durand, 1960, p. 223; Fitzgerald, 1936, 
1947).  

In order to maximise the possible impact of this demographic 
crisis, we shall assume that the death toll was 36 million.  
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Figure 2. Demographic transition in the growth of global population 

around AD 1. The transition can be described by the monotonically 
changing distribution (Nielsen, 2016j; 2017). Rebellion of An Lu-Shan, 
which caused a massive reduction in the size of population in China, had 

no impact on the growth of global population. For the reference to the 
sources of data and for the description of their analysis see Nielsen 

(2016j; 2017). 
 
The impact of the Plague of Justinian is hard to estimate 

because of the incomplete information combined with conflicting 
claims. The plague is claimed to have reduced the population of 
Constantinople by 40% between AD 541 and 542 (Austin Alchon, 
2003). Cunha and Cunha (2006) estimated a 30% reduction of the 
population of the Roman Empire between AD 542 and 590, or a 
maximum of about 14 million out of the total of 48 million 
(Maddison, 2006; Seeck, 1921). ‚The plague so weakened the 
Roman Empire that not long after the plague had passed, Roman 
borders were overrun by Huns, Goths, Moors, and other 
‘barbarians’‛ (Cunha & Cunha, 2006). Rosen (2007) estimates that 
this plague killed 25 million people in a short time of only between 
AD 541 and 542. In around AD 549 the same plague emerged also 
in Britain (Carmichael, 2009). It is also claimed that ‚The Plague 
of Justinian recurred in discernible cycles of about nine to twelve 
years‛ (Dols, 1974, p. 373).  

There is also one claim, which is distinctly different than all 
other estimates. Assisted by the Eurasian Silk Road, this plague 
was supposed to have spread to China in around AD 610, (Ross, 
2008) continuing its devastation until around AD 700 (Duncan & 
Scott, 2005) and killing probably a maximum of about 100 million 
people (Ross, 2008), which would represent a 50% reduction in the 
world population. Even if we consider the regenerating effects of 
Malthusian positive checks (Malthus, 1798; Nielsen, 2016i), such a 
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huge reduction should be reflected in the growth trajectory but it is 
not. By AD 500, the growth of the world population was at the end 
of its transition (see Figure 2) and commenced its new hyperbolic 
trend. In AD 500, the estimated size of the world population was 
only 190 million (Nielsen, 2016j and references therein). The 
claimed massive death toll of 100 million was supposed to have 
occurred between AD 610 and 700, i.e. when the growth of the 
world population settled already along a new hyperbolic trajectory, 
but we see no sign of such a disturbance. This claim of such a large 
death toll is almost certainly incorrect. 

In our survey, in order to maximise the evidence in favour of 
the concept of Malthusian stagnation, we are considering the 
strongest impacts, which for the Plague of Justinian appears to be 
the death toll of 25 million in a very short time, between AD 541 
and 542. We shall see later that, under this assumption, this plague 
had the strongest overall impact of all demographic catastrophes 
ever recorded, as manifested by four out of five indicators, and yet 
it caused no noticeable disturbance in the growth of the world 
population (see Figure 2). 

Black Death (1343-1351) is another example of a massive 
demographic catastrophe and is claimed to have killed over 60% of 
the urban population in Asia, about 30% of the population of the 
Middle East and 30-60% of the population of Europe (Hawas, 
2008). Beran (2008) claims that in many cities the death toll was 
over 90%, creating a severe hardship for the surviving population 
and adding to the total death toll caused also by the lack of food 
and lack of access to safe drinking water. The decaying corpses 
were also reducing the chance of survival. About 20% of the 
population of England died between AD 1348 and 1350 and a total 
of 50% by AD 1400 (Gilliam, 1961). Depending on the affected 
area, mortality rates varied between 25% and 70% (Cunha & 
Cunha, 2006). In terms of the total and relative death toll, Black 
Death was the greatest single demographic catastrophe ever 
recorded. 

As mentioned earlier, plagues were also used as biological 
weapons by employing a gruesome practice of catapulting infected 
corpses at the walls of fortifications or hurling them over the walls 
by using trebuchets. This ghastly method was used by Greeks, 
Romans and other attackers between 300 BC and AD 1100, and by 
Tartars in AD 1346 against the residents of Genoa (Cunha & 
Cunha, 2006; Khan, 2004). 

Other examples of large local casualties caused by demographic 
catastrophes include smallpox in Japan (AD 812-814), killing 
about half of the population of that country (Austin Alchon, 2003); 
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the 1696 famine killing between 25% and 30% of the population of 
Finland (Jutikkala, 1955); the 1770 famine in Bengal, killing  about 
30% of the population (or a total of 10 million) and the 1376 
famine in Italy, killing 60% of the population (Ghose 2002; Keys, 
et al., 1950; Walford, 1878). 

According to Mallory (1926), 18 provinces of China 
experienced 1015 draughts between AD 620 and 1619, or about 
one per year. However, they were unevenly distributed, illustrating 
that while the number of casualties and impacts of demographic 
catastrophes might be high in small and isolated regions, their 
effects could be much less severe when averaged over a larger 
number of population.  

There was a total of 443 draughts in the Northern Division, 352 
in the Central Division and 220 in the Southern Division. However, 
even within the same division, the number of draughts varied 
significantly between various districts. For instance, in the 
Northern Division, Honan District experienced a total of 112 
draughts but Kansu Division only 4. In the Central Division, the 
largest number of draughts (113) was in the Chekiang District and 
the smallest (28) in the Anhwei District. In the Southern Division, 
the number of draughts varied between 4 and 59 per district.  

The list of significant lethal events in China includes: 60-70% 
of troops killed during a single military engagement in AD 16; 
70% of Mongolians killed by hunger in AD 46; 30-40% of troops 
killed in AD 162; about 70% of troops killed in a single military 
engagement and by famine and epidemic; close to 100% killed by 
locusts and famine in AD 312 in the northern and central China; 
over 30% killed in Shantung in AD 762; over 50% in Chekiang in 
AD 806; 30-40% in Hupeh, Kinagsu and Anhui in  AD 891; 90% 
in Hopei in  1331; 50% of troops between  1351-1352; over 70% in 
Shansi in AD 135; 60-70% in Hupeh in   1354, and 100% in 
various towns and villages in Hunan in  1484 (Austin Alchon, 
2003; McNeill, 1976)  

It is claimed that in Mexico, 25-50% of the population died of 
smallpox (1520-1521), 60-90% probably of typhus (1531-1532), 
and over 50% of either the bubonic plague or typhus between 1576 
and 1581 (Austin Alchon, 2003; Motolinía aka Fray Toribio de 
Benavente o Motolinía, 1971; del Paso y Troncoso, 1940; Prem, 
1992).  

The estimated death toll in the Andes between 1524 and 1591 
includes 30-50% by smallpox (1524-1527), 25-30% by measles or 
bubonic plague (1531-1533), 15-20% by influenza, measles and 
smallpox (1558-1559), and about 50% by influenza, measles, 
smallpox and typhus between 1585 and 1591 (Cook, 1981; 
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Dobyns, 1963). Dobyns (1993) gives also many examples of large 
death tolls, sometimes as high as 98% but most often close to 80-
90%, caused by diseases among Native American population.  

So, it appears that humans always lived with the threats and 
with deadly effects of demographic catastrophes strong enough to 
reduce often substantially the size of local populations. We shall 
now investigate their potential impact on the growth of the world 
population.  
 

Indicators of impact 
In order to study the potential impacts of demographic 

catastrophes we have to introduce a few useful gauge indicators. 
Their definition is assisted by the diagram presented in Figure 3. 

 

 
Figure 3. Schematic diagram describing the composition of a 

demographic catastrophe. The leading parameters are: – the duration of 
demographic catastrophe; T – the recovery time; A – the death toll. 
 
Before the onset of a demographic catastrophe, the population 

increases along the trajectory ( )f t . It reaches the size
0S at the time 

0t , which marks the beginning of the demographic catastrophe. 
The demographic crisis lasts for  number of years, between the 
time

0t  and 
1t . Depending on the intensity of the demographic 

catastrophe and on the efficiency of the process of regeneration 
(Malthus, 1798; Nielsen, 2016i), the growth of the population 
during the demographic crisis may be diverted to a new trajectory

( )h t , which might be still increasing, remain constant or 

decreasing. At the end of crisis, the size of the population is 
rS , 
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which might be larger than, equal to, or smaller than the original 
size

0S . 
1S , is the size of the population, which would have been 

reached if the crisis did not occur 
When the crisis is over, the growth of population continues 

along a new trajectory ( )g t The quantity A is the death toll and T is 
the recovery time, i.e. the time required for the population to reach 
the size 

1S . 
Recovery time depends on the growth rate, R, during the time 

of crisis. Over a relatively small span of time associated with 
demographic catastrophes we can use linear approximations of the 
relevant trajectories. 
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       (5) 

 
is the relative impact, i.e. the number of people killed by the 
demographic catastrophe as compared with the size of the 
population at the onset of crisis. 

The growth rate R can be estimated by examining the 
population data around the time of crisis while the quantity a can 
be easily calculated using the reported number of people A killed 
by the crisis and the estimated size of the population at the 
beginning of crisis. Using these readily accessible quantities we 
can then calculate the recovery time T, which together with a (the 
relative number of people killed during demographic crisis) will 
help to gauge the intensity of the demographic catastrophe.   

Another way of calculating the recovery time T is to use the 
exponential rather than linear approximation for the function )(tg . 
Under this assumption and using the well-known expression for the 
exponential function [eqn (2)] we can easily show that 
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This is a general formula that does not have to be related to a 

demographic crisis. It is simply a formula for calculating the time 
needed for the exponential growth to increase from

rS to
1S , which 

happens to be precisely what we want to use to calculate the 
recovery time. For small a, the recovery time calculated using eqn 
(6) is virtually the same as by using the eqn (4). Thus, for instance, 
for 20%a  , the recovery time calculated using eqn (6) is only 
10% smaller than using eqn (4). For lower values of a, the 
discrepancy is even smaller. It increases to 23% for 50%a  . As 
we shall soon see, in our survey of demographic catastrophes we 
shall be dealing with a values of up to only 20%. 

If we use the hyperbolic approximation, then referring to the 
eqn (1), the recovery time is given by 

 

( )r r

A
T

S A kS



.       (7) 

 
If we want to use an approximate expression incorporating the 

relative impact a, then using the eqn (1) and (5) we get 
 

2

(1 )

a
T

A a k



.        (8) 

 
So now rather than using just the parameter A (the total death 

toll) we have two additional gauge indicators, a and T, the 
parameters that give us additional information about the intensity 
of crisis.  

However, we can also introduce yet another useful gauge 
indicator, which compares the recovery time with the duration of 
the demographic catastrophe. We shall call it the intensity indicator 
(I) and we shall define it simply as 

 



T
I  .       (9) 

 
If the recovery time T is large when compared with the duration 

of crisis, then we are dealing with a potentially strong demographic 
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catastrophe. The larger was the recovery time compared with the 
duration of crisis the stronger was the devastating impact of crisis.  

However, there is also another hidden information in this 
indicator. Using the diagram presented in Figure 3 and assuming 
that gradients of functions )(tf and )(tg are approximately the same, 
we can see that 

 

01 SS

A
I


 .                 (10) 

 
If 1 0A S S  , then 1I  , which then indicates that population 

size continued to increase during crisis. If 1 0A S S  , then  1I  , 
which then indicates that the size of population remained 
approximately constant during crisis. If 1 0A S S  , then  1I  , 
which indicates that the size of population was decreasing during 
crisis.  

Thus, by looking at the I indicator we can tell not only whether 
the crisis was weak or strong but also whether the population was 
still increasing, remained constant or decreasing during the crisis. 
However, even if 1I   it does not mean that we a dealing with a 
potentially strong crisis, because depending on the duration of 
crisis the size of the population could still remain approximately 
constant. A potentially strong demographic crisis will be 
characterized by I>>1. A guide to the intensity indicator is 
presented in Table 1. 

Finally, we can also introduce two other indicators: the per 
annum  relative  impact ( )  and the per annum intensity  indicator  
(  ). 




a
  ,                 (11) 




I
 .                 (12) 

 
The complete list of indicators used to evaluate the effects of 

demographic catastrophes is presented in Table 2.  
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Table 1. A guide to the interpretation of the intensity indicator (I) 
1I   Weak crisis. Population continues to increase during crisis.  
1I   Moderate crisis. Population size remains approximately 

constant during crisis. 
1I   Moderate or potentially strong crisis depending on the value 

of I. Population size decreases during crisis. 
I>>1 Potentially strong crisis 

 
Table 2.Indicators used to process information about demographic 
catastrophes 

Symbol/Definition Description Unit 

0t  The onset of crisis year 

A Death toll 610  
  Duration of crisis year 

0/a A S  The fraction of the population killed by 
crisis 

% 

/a   Per annum fraction of population killed by 
crisis 

%/year 

T Recovery time year 

2t  The year of the full recovery year 

/I T   Intensity indicator  

/I   The per annum intensity indicator  1year  

Note: Demographic catastrophe may be considered potentially strong if indicators 

0/a A S , /a  , T, /I T  and /I  are large.  

 
Evaluation of impacts of demographic catastrophes 

The survey of demographic catastrophes and their impacts is 
presented in Table 3. The summary of all impacts is shown in 
Table 4. In order to maximise evidence in favour of the postulate 
of Malthusian stagnation we have considered only the most 
significant demographic catastrophes characterised by the death 
toll of 1A   million. Had we included smaller demographic 
catastrophes, the fraction of potentially strong catastrophes, which 
could have had noticeable impact on the growth of the world 
population, would have been significantly reduced.  

The remarkable feature of this survey is that, in general and as 
revealed by the values of the introduced gauge indicators, even 
large catastrophic events had much smaller impact on the growth 
of the world population than it might have been expected by 
looking just at the death toll or at their reported local impacts. 
Indeed, we only have a few events that might have had a tangible 
impact, and they are all clustered around the early years of the AD 
era when the estimates of the total number of casualties were 
probably grossly exaggerated (Durand, 1960; Fitzgerald, 1936; 
1947; Gilliam, 1961; Littman & Littman, 1973; Russel, 1968; 
Twigg, 1984, Watkins & Menken, 1985).  
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Table 3. Survey of major demographic catastrophes AD 1-1900. The most 
significant values of gauge indicators are indicated by bold characters and 
moderately significant by italics. (Symbols are explained in Table 2.) 

Event 0t  2t  A    a    T  I    

Red Eyebrows Revolt 2 245 29.0 87 11.5 0.13 157.5 1.8 0.02 
Antonine Plague 166 214 5.0 15 2.2 0.15 34.1 2.3 0.15 
Plague of Justinian  541 756 25.0 2 12.5 6.23 214.2 107.1 53.54 
An Lu-Shan Rebellion 756 845 36.0 8 15.4 1.93 227.7 28.5 3.56 
N. Egypt Earthquake 1201 1206 1.5 1 0.5 0.46 4.8 4.8 4.80 
Mongolian Conquest 1260 1405 40.0 35 11.3 0.32 110.6 3.2 0.09 
Great European Famine 1315 1336 7.5 3 2.0 0.68 19.1 6.4 2.13 
Famine in China 1333 1369 9.0 15 2.4 0.16 21.8 1.5 0.10 
Black Death 1343 1530 75.0 9 19.7 2.19 178.7 19.9 2.21 
Fall of the Yuan Dynasty 1351 1385 7.5 18 1.9 0.11 17.4 1.0 0.05 
Sweating Sickness 1485 1556 3.0 67 0.6 0.01 4.6 0.1 0.00 
Mexico Smallpox Epidemic 1520 1527 4.0 2 0.8 0.42 6.0 3.0 1.50 
French Wars of Religion 1562 1602 3.0 37 0.6 0.02 3.7 0.1 0.00 
Russia’s Time of Trouble 1598 1619 5.0 16 0.9 0.06 5.6 0.3 0.02 
Fall of the Ming Dynasty 1618 1669 25.0 27 4.3 0.16 25.2 0.9 0.03 
Thirty Years War 1618 1655 7.0 31 1.2 0.04 7.0 0.2 0.01 
Deccan Famine in India 1630 1633 2.0 2 0.3 0.17 2.0 1.0 0.50 
Famine in France 1693 1696 2.0 2 0.3 0.15 1.5 0.8 0.38 
Bengal Famine 1769 1778 10.0 5 1.2 0.23 4.7 0.9 0.19 
Napoleonic Wars  1803 1816 4.0 13 0.4 0.03 1.4 0.1 0.01 
Famines in China 1810 1819 22.5 2 2.3 1.13 7.9 3.9 1.96 
Great Irish Famine 1845 1850 1.0 6 0.1 0.01 0.2 0.0 0.01 
Famine in China 1846 1849 11.3 1 1.0 0.96 2.8 2.8 2.83 
Taiping Rebellion 1850 1868 20.0 15 1.6 0.11 4.5 0.3 0.02 
Famine in India 1866 1866 1.0 1 0.1 0.08 0.2 0.2 0.20 
Famine in Rajputana 1869 1869 1.5 1 0.1 0.11 0.3 0.3 0.29 
Famine in Persia 1870 1871 2.0 2 0.1 0.07 0.4 0.2 0.10 
Famine in N. China  1876 1880 13.0 3 0.9 0.31 2.3 0.8 0.25 
British India Famine 1876 1903 17.0 25 1.1 0.05 2.6 0.1 0.00 
Yellow River Flood 1887 1887 2.0 1 0.1 0.13 0.3 0.3 0.31 
Famine in India 1896 1902 8.3 6 0.5 0.08 1.1 0.2 0.03 

 
Table 4. Summary of impacts of demographic catastrophes.  
Indicator Impact Number 

of Events 
Fraction of 
Total [%] 

Insignificant 
[%] 

Relative impact (a) Strong 2 6  
 Moderate 3 10  
 Negligible 26 84 94 
Per annum relative impact ( ) Strong 1 3  
 Moderate 2 6  
 Negligible 28 91 97 
Recovery time (T) Strong 5 16  
 Moderate 5 16  
 Negligible 21 68 84 
Intensity indicator (I) Strong 1 3  
 Moderate 11 35  
 Negligible 19 62 97 

Per annum intensity indicator (  ) 
Strong 1 3  

 Moderate 7 23  
 Negligible 23 74 97 
The average of all five Strong 2.0 6.5  
 Moderate 5.6 18.1  
 Negligible 23.4 75.4 93.5 

Note: The attribute described as strong should be interpreted as potentially strong or 
the strongest of all impacts. This attribute does not identify impacts, which had a 
strong impact on the growth of population but only impacts, which were potentially 
strong enough to have a noticeable effect.  
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The leading indicator is the relative impact a because it gives 
the direct information about how the growth trajectory might have 
been affected by a given individual demographic catastrophe. 
Events for which a is less than or equal to around 10% can be 
ignored, because such displacements would be hardly noticeable 
on the trajectories describing the growth of population. The 
corresponding demographic catastrophes could be described as 
negligible. Even events with a up to around 20% could be expected 
to have only relatively small effect. However, in this survey we 
have two events (An Lu-Shan Rebellion and Black Death), with 
the relative impact of 15.4% and 19.7%, which we shall describe as 
having a potentially strong impact. They account for only 6% of all 
impacts. Thus 94% of all large demographic catastrophes, i.e. 
catastrophes with 1A   million, were individually too weak to 
have a significant impact on the growth of the world population. 

We should remember, however, that we are ignoring the 
spontaneous process of regeneration (Malthus, 1798; Nielsen, 
2016i). By describing a crisis as strong we are only distinguishing 
it from other catastrophes. A strong crisis is only relatively strong 
or potentially strong. It is a crisis, which could have been reflected 
in the growth of population but considering the ever-present 
mechanism of regeneration its impact is likely to be significantly 
reduced.  

If we consider the per annum impact measured by the indicator 
 , we can see that there was possibly only one event (Plague of 
Justinian) that might have had a relatively strong impact on the 
growth of the population and two (An Lu-Shan Rebellion and 
Black Death) that might have had a marginal impact. Thus, when 
measured by this indicator, 97% of all large demographic 
catastrophes had insignificant effect on the growth of the world 
population.  

The recovery time (T) shows five significant events (Red 
Eyebrow Revolt, Plague of Justinian, An Lu-Shan Rebellion, 
Mongolian Conquest and Black Death). For all of them, the 
estimated recovery time was between around 100 and 200 years. 
They represent 16% of all demographic catastrophes, the largest 
fraction in this survey. However, even for this indicator, the 
fraction of negligible events is high, 84%. The majority of all large 
critical events could have potentially inflicted only negligible 
impact on the growth of population.  

The intensity indicator (I) suggests only one prominent event 
(Plague of Justinian) and possibly 11 moderately strong events. 
This indicator, therefore, shows that 97% of all large demographic 
catastrophes could have had, at best, only small impact on the 
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growth of the world population. For the per annum intensity 
indicator (  ), the fraction of insignificant impacts is the same, 
97%. 

If we consider the average values of all five indicators we can 
see that only 6.5% of all demographic catastrophes with the death 
toll larger or equal to 1 million might have had a tangible impact 
on the growth of the world population. The remaining 93.5% were 
too weak to have any significant impact. It is, therefore, clear that 
demographic catastrophes were too weak to shape the trajectory of 
growth of the world population, particularly if we consider that 
demographic catastrophes trigger also a strong process of 
regeneration (Malthus, 1798; Nielsen, 2016i).  

The generally large percentage of insignificant impacts is an 
overwhelming evidence contradicting the concept of Malthusian 
stagnation but confirming conclusions based on the analysis of 
distributions describing the growth of population and the economic 
growth (Nielsen, 2016a; 2016d; 2016j), the analysis showing the 
absence of convincing evidence of frequent impacts of 
demographic catastrophes.  

It is also useful to notice certain correlations between gauge 
indicators because such correlations could give a closer insight into 
the process of demographic catastrophes. They can reveal what 
was happening during a given crisis. Thus, for instance, the 
intensity indicator (I) for the Mongolian Conquest shows that 
population was decreasing during this crisis but the per annum 
intensity indicator shows that the population was approximately 
constant. The intensity indicator was also not excessively large. 
The size of the population was decreasing but slowly. However, 
the recovery time was exceptionally high. We can explain it by 
noticing that the duration of the crisis was long.  

Our survey shows also a unique convergence of five 
demographic catastrophes. They were: the Mongolian Conquest 
(1260-1295) with the total estimated death toll of 40 million; Great 
European Famine (1315-1318), 7.5 million; the 15-year Famine in 
China (1333-1348), 9 million; Black Death (1343-1352), 75 
million; and the Fall of Yuan Dynasty (1351-1369), 7.5 million. 
Their combined maximum death toll was 139 million. The 
estimated size of the world population in AD 1250 was around 380 
million. The combined maximum relative impact of these five 
catastrophes was, therefore, around 37%. Such a strong impact 
should be reflected in the growth of the world population and 
indeed it was but not as strongly as we could have expected 
(Nielsen, 2016j). It caused only a minor disturbance. During this 
crisis, the population was decreasing but very slowly to reach 360 
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million at the termination of these five catastrophes, illustrating the 
efficient process of regeneration even during this combined crisis. 
This crisis was followed by a faster growth and the lost time was 
soon recovered, the faster growth illustrating again the efficient 
process of spontaneous regeneration (Malthus, 1798; Nielsen, 
2016i). 

Before the crisis, the growth of population was following 
hyperbolic trajectory characterised by 33.448 10k   . If 
continued undisturbed, it would have reached the size 

1 470S 

million in around AD 1400. However, the actual size,
rS , at that 

time was 360 million. If the growth of population after the crisis 
continued along the same hyperbolic trajectory as before the crisis, 
then the recovery time, calculated using the eqn (7), would have 
been 224 years. However, after the crisis, the growth of population 
was following a faster trajectory, characterised by 34.478 10k   . 
So, if we use the eqn (7) again we can calculate that the 
corresponding recovery time for this faster trajectory was 173 
years. The actual recovery time, as recorded by data, was around 
165 years, which is in good agreement with the calculated value. 
The process of regenerations decreased the recovery time by 50-60 
years.  

 
Summary and conclusions 

The study presented here adds to the explanation why 
demographic catastrophes did not shape the growth of population 
and the associated economic growth. 

The currently accepted interpretation of the historical growth of 
population is succinctly summarised in the following statement: 
‚Throughout human history, epidemics, wars and famines have 
shaped the growth path of population‛ (Lagerlöf, 2003a, p. 435). If 
such is the case we should have no problem with showing many 
examples of this mechanism but we cannot find them. We can 
analyse data going as far back as 2,000,000 years ago and we can 
see that with the exception of just one minor disturbance around 
AD 1300 there is no evidence of such effects (Nielsen, 2016j; 
2017). We also see no evidence in the distributions describing 
regional growth of population (Nielsen, 2016d).  

This imagined, but never proven mechanism, was supposed to 
have been responsible for creating an endless epoch of Malthusian 
stagnation characterised by irregular and generally stagnant state of 
growth of population and of economic growth, but data are in clear 
contradiction of this doctrine (Nielsen, 2016a; 2016d; 2016j; 2017; 
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von Foerster, Mora & Amiot, 1960). It is a doctrine, which is based 
on the incorrect interpretation of hyperbolic growth. 

The growth of population and economic growth were 
hyperbolic. It is a monotonically increasing growth. It is slow over 
a long time and fast over a short time but there is no stagnation and 
no takeoff or explosion at any time. Stagnation and explosion are 
just illusions, which readily disappear when we use the method of 
reciprocal values (Nielsen, 2014) to analyse data. What we see as a 
stagnation is just a monotonically increasing growth and what we 
see as an explosion is just the natural continuation of hyperbolic 
growth. 

We have demonstrated that with the exception of just one event 
in the past 12,000 years (Nielsen, 2016j), and indeed in the past 
2,000,000 years (Nielsen, 2017), there is no evidence that 
demographic catastrophes were ever shaping the growth of the 
world population. This unique event occurred around AD 1300 and 
coincides with five strong demographic catastrophes: the 
Mongolian Conquest (1260-1295) with the total estimated death 
toll of 40 million; Great European Famine (1315-1318), 7.5 
million; the 15-year Famine in China (1333-1348), 9 million; 
Black Death (1343-1352), 75 million; and the Fall of Yuan 
Dynasty (1351-1369), 7.5 million. The combined death toll caused 
by them is estimated at a maximum of 139 million. At the onset of 
this unique event the world population was only about 380 million, 
so the relative impact should have been strong. This combined 
crisis lasted for about 280 years but it caused only a minor 
disturbance in the growth of population. At the end of this crisis, 
the size of population was reduced to only 360 million. There is 
also no convincing evidence that demographic catastrophes were 
shaping the growth of regional populations (Nielsen, 2016d). 
Likewise, there is no convincing evidence that they had any 
tangible impact on the economic growth, global or regional 
(Nielsen, 2016a).  

We have already explained why demographic catastrophes did 
not shape the growth of population. We have demonstrated 
(Nielsen, 2016i) that, as first observed by Malthus (1798), his so-
called positive checks (demographic catastrophes and many forms 
of harsh living conditions) are responsible not only for increasing 
the death toll but also for triggering the process of regeneration, 
reflecting the well-known phenomenon observed commonly in 
nature. Thus, the destructive action of even strong demographic 
catastrophes is quickly compensated by this process, which is 
likely to produce even faster growth than before.  
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We can now understand why a combination of five strong 
demographic catastrophes were needed to cause only minor and 
relatively short-lasting disturbance in the growth of population 
around AD 1300. This was one and only example in the past 
2,000,000 years (Nielsen, 2017) when we can see a correlation 
between the growth of population and demographic catastrophes. 
Now we have added to this explanation by showing that 
individually, demographic catastrophes were generally too weak to 
have a tangible impact on the growth of population. On rare 
occasions, when they were strong enough to cause some minor 
damage, their action was quickly counteracted by the spontaneous 
and efficient process of regeneration (Malthus, 1798; Nielsen, 
2016i). 

We have defined a series of gauge indicators allowing for a 
study of impacts of demographic catastrophes. We have also 
concentrated our attention on the strongest catastrophes, thus 
maximising the fraction of potentially destructive impacts. Even 
then, this fraction turned out to be small. On average, only 6.5% of 
all major demographic catastrophes could have had a certain 
impact but as demonstrated by the analysis of relevant data 
(Nielsen, 2016d; 2016j; 2017) they had no impact. They were only 
relatively strong but even if they were stronger, such isolated 
actions could have been hardly expected to cause lasting 
disturbances in the growth trajectory, particularly if we consider 
the apparently ever-present process of regeneration (Malthus, 
1798; Nielsen, 2016i).  

Any negative impact on the growth of population could be 
expected to be reflected also in the economic growth but the 
analysis of data shows that the economic growth remained also 
undisturbed (Nielsen, 2016a). The growth of population and 
economic growth were exceptionally stable and generally 
uninterrupted. Demographic catastrophes did not shape the 
economic growth or the growth of population.  
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5. Mathematical analysis of income per capita 
in the United Kingdom 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
ccording to the generally accepted interpretations, the 
supposed long epoch of the so-called Malthusian 
stagnation in the economic growth and in the growth of 

human population was followed by a rapid increase, which is 
claimed to have been caused by modern progress reflected in and 
coinciding with the Industrial Revolution. The United Kingdom 
was at the centre of the Industrial Revolution and consequently, 
this postulated transition from stagnation to growth should be most 
clearly demonstrated in this country. 

We have already shown that the currently accepted 
interpretations are incorrect (Nielsen, 2014, 2015a, 2016a, 2016b, 
2016c, 2016d, 2016e, 2016f, 2016g, 2016h, 2016i, 2016j, 2016k). 
Within the range of analysable data, epoch of Malthusian 
stagnation did not exist in the economic growth and in the growth 
of population, global or regional. Likewise, the Industrial 
Revolution, 1760-1840 (Floud & McCloskey, 1994) did not boost 
the growth trajectories. 

 In particular, we have demonstrated (Nielsen, 2016k) that even 
in the United Kingdom, where the effects of the Industrial 
Revolution should be most clearly demonstrated, there was no 
boosting in the economic growth and in the growth of population. 
On the contrary, shortly after the Industrial Revolution, economic 
growth and the growth of population started to be diverted to 
slower trajectories. We have also demonstrated that within the 
range of the mathematically analysable data, the mythical epoch of 
Malthusian stagnation did not exist in the United Kingdom. 

A 
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Our analysis and conclusions are supported by data and by 
earlier investigations (Biraben, 1980; Clark,1968; Cook,1960; 
Durand, 1974; Gallant, 1990; Haub, 1995; Kapitza, 2006; Kremer, 
1993; Lehmeyer, 2004; Livi-Bacci, 1997; Maddison, 2001, 2010; 
Mauritius, 2015; McEvedy & Jones, 1978; Podlazov, 2002; 
Shklovskii, 1962, 2002; Statistics Mauritius, 2014; Statistics 
Sweden, 1999; Taeuber & Taeuber, 1949; Thomlinson, 1975; 
Trager, 1994, United Nations, 1973, 1999, 2013; von Hoerner, 
1975, von Foerster, Mora & Amiot, 1960; Wrigley & Schofield, 
1981). The only way to accept the doctrine of Malthusian 
stagnation and the concept of the boosting effects of the Industrial 
Revolution is to ignore data or to manipulate them in such a way as 
to make them appear to support the erroneous ideas (Ashraf, 2009; 
Galor, 2005a, 2005c, 2007, 2008a, 2008b, 2008c, 2010, 2011, 
2012a, 2012b, 2012c; Galor & Moav, 2002; Snowdon & Galor, 
2008). 

Our aim now is to investigate the new trend of income per 
capita in the UK, the trend which commenced relatively recently 
when the economic growth started to be diverted from its 
historical, linearly modulated hyperbolic trajectory (For its 
definition see Nielsen, 2015a). We shall first show how to describe 
growth by using the differential equation defining the growth rate. 
This part of the analysis will show that contrary to the generally 
expected outcomes, fluctuations and long-term variations in the 
growth rate have negligible effect on the growth trajectories. We 
shall then study the future growth of income per capita. 

 
Overview 

Distributions describing the growth of population and economic 
growth in the UK based on using Maddison’s data (Maddison, 
2010) are shown in Figure 1-3.  
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Figure 1. Growth of population in the UK between AD 1 and 2008. 

Growth was hyperbolic between AD 1 and 1850. From around 1850, 
towards the end of the Industrial Revolution, the growth of population 

started to be diverted to a slower trajectory. Industrial Revolution had no 
impact on shaping the growth trajectory. 

 

 
Figure 2. Economic growth (as described by the GDP) in the UK. The 
growth was hyperbolic between AD 1 and 1600 and again (but a little 
slower) between AD 1600 and 1850. From around 1850, the growth 

started to be diverted to a slower trajectory. Within the range of 
analysable data, i.e. from AD 1, the mythical epoch of stagnation did not 

exist. Economic growth was steadily increasing. Industrial Revolution did 
not boost the economic growth. There was no escape from the Malthusian 

trap because there was no trap. 
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Figure 3. Growth of income per capita (GDP/cap) in the UK between AD 

1 and 2008. The GDP data follow closely the empirically-determined 
linearly-modulated hyperbolic distributions (defined in Nielsen, 2015a). 
Industrial Revolution did not change the growth trajectory. From around 

1850, the growth of the GDP/cap started to be diverted to a slower 
trajectory. 

 
Population and the Gross Domestic Product (GDP) were 

increasing hyperbolically. Contrary to the currently accepted 
interpretations, there was no Malthusian stagnation and the 
Industrial Revolution had no impact on the economic growth and 
on the growth of population even in the United Kingdom, the very 
centre of this revolution.  

We should notice that at the time of the Industrial Revolution, 
economic growth and the growth of population in the United 
Kingdom were close to escaping to infinity. It was most fortunate 
that natural processes did not comply with the imagined 
interpretations of the growth mechanism. Any boosting by the 
Industrial Revolution would have been catastrophic.  

While the growth of population was following a single 
hyperbolic trajectory, the growth of the GDP experienced a 
transition around AD 1600 from a fast to a slower hyperbolic 
trajectory. This transition is reflected in the income per capita 
(GDP/cap) shown in Figure 3. Industrial Revolution did not boost 
the growth of population or the economic growth. From around 
1850, economic growth and the growth of population started to be 
diverted to a slower, non-hyperbolic, trajectory. This simultaneous 
transition in the growth of population and in the growth of the GDP 
is reflected in a clear transition in the income per capita (GDP/cap). 
It is the purpose of this publication to investigate this new 
trajectory.  
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Mathematical method 
Our analysis is based on the examination of the growth rate 

(Nielsen, 2015b): 
 

1 ( )
( )

( )
e

dS t
R t

S t dt
       (1)  

 
where ( )S t is the size of the growing entity and ( )eR t  

is the 

empirically-determined growth rate. In the case discussed here, the 
size of the growing entity is the GDP/cap. 

There are two ways of solving this equation: numerical or 
analytical. If the empirically-determined growth rate  ( )eR t  

can be 

described analytically, then  
 

( ) exp ( )S t f t dt 
        (2) 

 
where ( )f t  is the analytical representation of ( )eR t .  

If ( )eR t cannot be represented by a simple mathematical 

function, as in the case of randomly-fluctuating growth rate, then 
the eqn (1) has to be solved numerically. We also have to solve the 
eqn (2) numerically if the integration of the function ( )f t  leads to 

computational problems, such as when ( )S t has to be expressed 
by an infinite series. We shall now use both of these methods, 
analytical and numerical to describe the growth of income per 
capita in the UK and to predict growth. 

 
Mathematical analysis 

Four representations of the growth rate of income per capita 
(GDP/cap) in the UK between AD 1830 and 2008 are shown in 
Figure 4. They are (1) R(Direct) calculated directly from the 
GDP/cap data; (2) R(Refined) calculated using the GDP/cap data 
and interpolated gradients; (3) calculated using the best polynomial 
fit to R(Refined) represented in this case by a sixth-order 
polynomial; and (4) calculated by using linear fit to R(Direct). 
Virtually the same linear distribution was obtained by fitting 
R(Refined).  
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Figure 4. Four representations of the growth rate of income per capita 

(GDP/cap) in the United Kingdom between AD 1830 and 2008. R(Direct) 
is the growth rate calculated directly from the GDP/cap data. R(Refined) 

is the growth rate calculated using the GDP/cap data and interpolated 
gradients. ( )f t - Polynomial is the sixth-order polynomial fitted to 

R(Refined) and ( )f t  - Linear is the linear fit to R(Direct). 

 
We shall now use all these four representations of the growth 

rate to describe the GDP/cap distribution. We shall present two 

numerical solutions of the eqn (1) by using ( ) ( )eR t R Direct and 

( ) ( )eR t R Refined . We shall also present two analytical solutions 

( )f t  represented by a six-order polynomial or by the linear 
function. Finally, we shall use the linear representation of the 
growth rate to predict growth of income per capita.  

Describing the growth trajectory 
Two numerical solutions of the eqn (1) are presented in Figure 

5. They are so close to the data that in order to see the difference 
between them we have to look at a magnified section (Figure 6) in 
the region of large fluctuations of R(Direct) (see Figure 4). 

Results presented in Figures 5 and 6 show that the two 
numerical integrations of the eqn (1) give excellent description of 
data. However, while the numerical integration using 

( ) ( )eR t R Refined reproduces the general trend of the GDP/cap 

distribution, the calculation based on using ( ) ( )eR t R Direct

reproduces the fine structure.  
We can now understand the origin of the fine structure, which 

can be seen in Figure 5, and even more clearly in Figure 6. These 
small ripples are caused by strong fluctuations in the growth rate. 
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However, it is important to notice that even strong fluctuation in 
the growth rate do not change the growth trajectory.  

It is incorrect to claim that fluctuations in the growth rate 
represent evidence of the existence of Malthusian stagnation. They 
do not. Whatever might be their origin, they have no tangible effect 
on the growth trajectories and consequently on the mechanism of 
growth. Fluctuations in the growth rate can be neglected when 
trying to understand the mechanism of growth.  

 

 
Figure 5. The growth of income per capita (GDP/cap) in the UK between 
1830 and 2008. Data of Maddison (2010), are reproduced by carrying out 

numerical integration of the eqn (1) using ( ) ( )eR t R Direct or 

( ) ( )eR t R Refined , both growth rates displayed in Figure 4. Both 

numerical calculations give good representation of data. 
 
 

 
Figure 6. Magnified section of the GDP/cap distributions showing the 
difference between the results of two numerical integrations of the eqn 

(1). These calculations explain the origin of the fine structure of GDP/cap 
distribution. 
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We shall now turn our attention to the analytical solutions of the 
eqn (1) given by the eqn (2). In Figure 7 we show two such 
solutions, using ( )f t  representing either the best, sixth-order 
polynomial, fit to R(Refined) or the best linear fit to R(Direct). In 
order to examine the differences between these two solutions, we 
are displaying data every 10 years. 

 
Figure 7. Two analytical solutions of the differential eqn (1) compared 
with the GDP/cap data (Maddison, 2010). While the solution obtained 

using ( )f t  represented by linear function reproduces the general trend 

of the GDP/cap distribution, the solution corresponding to ( )f t
represented by the sixth-order polynomial reproduces the gentle 

oscillations around the general trend. 
 
Results presented in Figure 7 show that the solution based on 

using the ( )f t  represented by a linear function reproduces the 
general trend of the GDP/cap distribution but the calculations 
based on using the sixth-order polynomial, which reproduces the 
oscillating behaviour of R(Refined), reproduces also the gentle 
oscillations of the GDP/cap around the general trend.  

We can now understand the origin of these gentle oscillations in 
the GDP/cap distribution: they are generated by the long-term 
oscillations of the growth rate. These oscillations are present in 
R(Direct) but they are obscured by strong fluctuations. However, 
they are revealed in R(Refined), which is calculated using 
interpolated gradient.  

Thus, in summary, combining results presented in Figures 5-7, 
we can see that small ripples in the time-dependent distributions 
describing growth, if present, reflect strong fluctuations in the 
growth rate, while gentle oscillations around the prevailing trend 
reflect the long-term oscillations in the growth rate.  
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We have now shown how the interpretations of the mechanism 
of growth can be simplified. We do not have to worry about the 
strong fluctuations or about the long-term oscillations in the 
growth rate. We can concentrate our attention on the general trend 
of the time-dependent distributions and on simple mathematical 
representations of the growth rate.  

Of course, if we want to go a step further and to try to explain 
the origin of minor forces, which have no impact on the general 
trend, we would have to study the oscillations or minor ripples in 
the time-dependent distributions. Maybe such studies could lead to 
some interesting discoveries but they would have no impact on 
explaining the prevailing mechanism of growth.  

Predicting growth 
We can now use the GDP/cap data between AD 1830 and 2008 

to predict economic growth. We can see that the growth is not 
exponential because the best linear fit to the growth rate is not 
constant. The linear fit,  

 

0 1( )f t a a t  ,      (3) 

 
shown in Figure 4 is described by parameters 2

0 8.964 10a   

and 5

1 5.549 10a   . The gradient is small but positive, which 

means that the growth rate is steadily increasing. The growth rate 
around AD 1830 was about 1% but by 2000 it increased to around 
2%. By 2050, it is projected to increase to 2.2% and by 2100, to 
2.5%.  

The predicted growth is faster than the corresponding 
exponential growth fitting the same data. Any exponential growth 
becomes unsustainable after a certain time but the growth of 
income per capita in the UK is going to become unsustainable even 
faster than the corresponding exponential growth. The predicted 
growth is shown in Figure 8 and in Table 1. 
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Figure 8. The projected growth of income per capita in the United 

Kingdom. 
 
Sustainability of economic growth is defined not only by the 

availability of natural resources but also by the associated stress to 
maintain a given growth. We have defined the relative stress factor 
for the growth of the GDP (Nielsen, 2015c). We can use the same 
definition for the growth of income per capita. Thus, the relative 

stress factor  for the growth of income per capita can be defined 
as 

 

0

( / )

( / )

t

t

GDP cap

GDP cap
        (4) 

 
where ( / )tGDP cap is the income per capita at a certain time t 

and 
0

( / )tGDP cap is the income per capita at a certain, fixed time 

0t .  

 
Table 1. Projected growth of income per capita in the United Kingdom 
and the associated relative stress factor. 

Year GDP/cap R  Year GDP/cap R  
2000 22,031 1.95 1.00 2080 125,268 2.39 5.69 
2015 29,717 2.04 1.35 2090 159,536 2.45 7.24 
2020 32,924 2.06 1.49 2100 204,291 2.50 9.27 
2030 40,579 2.12 1.84 2110 263,033 2.55 11.94 
2040 50,289 2.17 2.28 2120 340,520 2.61 15.46 
2050 62,662 2.23 2.84 2130 443,246 2.66 20.12 
2060 78,508 2.28 3.56 2140 580,121 2.72 26.33 
2070 98,899 2.34 4.49 2150 763,419 2.77 34.65 

GDP/cap in the 1990 International Dollars; R – the growth rate of the 
GDP/cap, in per cent;   - the relative stress factor, in per cent. 
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The relative stress factor in 2015 was only 35% higher than in 

2000. A 35% greater effort was required to keep the economy 
growing along this new trajectory. By 2050, the stress factor is 
projected to increase to 2.84. Economic output per year will have 
to be almost three times as high as in the year 2000 to keep the 
economy growing along the same trajectory. Such a large stress 
might be already hard to tolerate. By the end of the current century, 
the annual economic output per year will have to be about 9 times 
as high as in the year 2000 and by 2150 it would have to be about 
35 times as high. Even with unlimited natural resources, there will 
come a time when such a large economic output will be physically 
impossible to achieve and the economic growth will either have to 
be diverted to a new trajectory or it will collapse.  

The general drive everywhere, not only in the UK but also in 
other countries, is to keep the economic growth rate increasing or 
constant. This is a serious mistake. Even with a constant growth 
rate, which describes exponential growth, such economic growth 
will become, at a certain stage, impossible to maintain, even if we 
had unlimited natural resources. To make the economic growth 
safe and secure, the growth rate should be now slowly decreasing, 
not only in the UK but also globally (Nielsen, 2015c). 

 
Summary and conclusions 

We have carried out the analysis of Maddison’s data 
(Maddison, 2010) describing income per capita (GDP/cap) in the 
United Kingdom between 1830 and 2008. Our analysis is based on 
solving differential equation describing the growth rate. We have 
presented two numerical and two analytical solutions of this 
equation. We have explained the origins of various features of the 
time-dependent GDP/cap distribution.  

We have demonstrated that strong fluctuations in the growth 
rate do not change the growth trajectory. They can, at best, be 
reflected only as just small ripples along the prevailing trend. It is 
incorrect to interpret even strong fluctuations in the growth rate as 
the evidence of the existence of Malthusian stagnation because 
these fluctuations have no impact on shaping growth trajectories. 

Long-term oscillations in the growth rate can be reflected as 
small oscillations of the growth trajectory. They are also unlikely 
to affect the general trend of growth. The mechanism of growth is 
determined by the prevailing trend of the growth trajectory.  

In order to study the mechanism of growth or to predict its 
future there is no need to worry about reproducing mathematically 
the details of the corresponding growth rate. Random fluctuations 
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and long-term oscillations in the growth rate can be neglected and 
the growth rate can be reproduced by a simplest function. Often, it 
is possible to do it by using linear functions. Indeed, using the 
simplest descriptions of the growth rate is most acceptable. 

Our analysis demonstrated that the current economic growth in 
the UK is unsustainable even if supported by unlimited natural 
resources, because after a certain time it will be impossible to 
maintain the ever-increasing output. At a certain time in the future, 
economic growth will have to start to be diverted to a slower 
trajectory or it will be likely to collapse.  

The same problem applies globally (Nielsen, 2016c). Global 
economic growth should now, or soon, be characterised by a 
slowly decreasing growth rate. The example of the economic 
growth in Greece shows that rapid decrease or increase in the 
growth rate can lead to catastrophic results (Nielsen, 2015d).  
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6. The Law of Growth 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
he aim of this publication is to formulate a simple law of 
growth, which could be used to study, interpret and 
understand any type of growth including economic growth 

described by the Gross Domestic Product or by income per capita. 
This comment will make it clear why this discussion is applicable 
to the study of economic growth. This law will link directly the 
trajectory of growth with the driving force. The aim here is to 
facility an easy and transparent way for studying the mechanism of 
growth because the mechanism of growth is defined by the 
associated driving force.  

If we can link the driving force with the growth trajectory, we 
can then easily check our interpretation of the mechanism of 
growth. We can use various types of forces to test whether 
proposed mechanism is in agreement with the empirical evidence. 
We can extend our study to predict growth assuming that the 
mechanism of growth is going to be unchanged, but we can also 
predict growth by assuming a different mechanism of growth. In 
such a case, we can also use the general law of growth but with a 
new, suitably defined driving force. 
 

The law of growth 
The definition 

The well-known principle in scientific investigations is: Entia 
non sunt multiplicanda praeter necessitatem. Before looking for 
complicated explanations or formulations, it is always advisable to 
adopt the simplest possible approach. Complicated explanations 

T 
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might be impressive and in some cases even unavoidable but the 
simplest solutions are always more attractive. 

It is well-known and generally accepted that any growth can, 
and usually is, described by the growth rate.  Once we know the 
growth rate, we can immediately understand whether the growth is 
fast or slow. We can even have a certain degree of understanding 
of its possible future, whether it can be sustained or not, whether it 
is too slow and should be speeded up, if possible, or maybe that it 
is too fast and should be slowed down.  

Thus, for instance, economic growth is routinely described 
using the percentage of the annual increase or decline. The growth 
of human population is also characterised in the same way.  

Often, in order to understand growth, the growth rate is 
converted into the doubling time. The equivalent quantity for 
radioactive isotopes is the half-lifetime calculated using the decay 
rate. If we have a radioactive material, which decays within 
seconds, we do not have to worry too much about its harmful 
effects. However, if we have radioactive contamination containing 
substantial amount of radioactive isotopes with half-lifetime of 
millions or billions of years, we can be sure that we have a serious 
problem. Likewise, if the doubling time for a spread of certain 
infectious diseases is millions of years, we do not need to be 
worried but if the doubling time is measured in days, then again we 
have a serious problem. We do not have to carry out any laborious 
calculation. A simple calculation assuming a constant doubling 
time or a constant growth rate can lead easily to an approximately 
correct answer, which in many cased is quite acceptable. 

Even though the simple formula for calculating the doubling 
time by dividing 70 or 69.3 by the growth rate expressed in per 
cent is applicable only to the exponential growth, and should never 
be applied to any other type of growth, such calculations are still 
carried out for other types of growth because we know that if we 
calculate the growth rate or the corresponding doubling time we 
can have a little better understanding of a given process.  

It seems to be obvious that the growth rate reflects the 
mechanism of growth and that there must be a close connection 
between the growth rate and the driving force of growth. The 
simplest way of describing this close connection is to assume that 
the growth rate is directly proportional to the driving force: 

 
G F ,       (1) 

 
where G is the growth rate, F is the driving force,  and  is a 

constant, which we could call the growth promoting factor, or the 
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compliance, because the larger is the parameter , the faster is the 
growth. 

Growth rate is defined as: 
 

1 ( )
( )

( )

dS t
G t

S t dt
 ,      (2) 

 
where ( )S t is the size of the growing entity, and t is time. 
This quantity is sometimes labelled unnecessarily and 

confusingly as the relative growth rate to distinguish it from 
another redundant and confusing term the absolute growth rate, 
which describes just the change in the size of the growing entity 
per unit of time, i.e. /dS dt . To make it even more confusing, the 
term absolute growth rate is sometimes replaced by the growth rate 
(e.g. Karev & Kareva, 2014) or by the exponential growth rate.  

This needless confusion could be easily avoided by leaving the 
well-known growth rate, as defined by the eqn (2), alone. It is a 
widely-used quantity applicable not only to the exponential growth 
but also to any other type of growth. All descriptions of growth in 
terms of per cent of the increase or in terms of the doubling time 
use the growth rate defined by the eqn (2), so the use of the term: 
the absolute growth rate, for this well-known growth rate 
represents an unnecessary and confusing aberration. We should 
always use the term growth rate only for the quantity defined by 
the eqn (2). 

If we insist on using /dS dt  to describe growth, we should 
never create confusion by associating it with the term growth rate 
but we should simply call it the absolute change. We do not create 
science by introducing complicated and confusing terms.  

The eqn (1) represents the simplest, general law of growth. 
There could be many other ways of linking the growth rate with the 
driving force but we have assumed the simplest relation. We call 
the eqn (1) the law of growth rather than the model of growth 
because this equation can be used to formulate a variety of models 
of growth, some of them already well known, but many of them yet 
unknown. Rather than using the existing models, such as 
exponential or logistic, even if their application could be 
questionable, we can tailor the models of growth to the studied 
processes and by doing so we can then try to explain the 
mechanisms of growth described by the relevant driving force. 

The eqn (1) can be rewritten as 
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F rG ,       (3) 
 

where 1r   . This is another representation of the general 
law of growth. 

Similarities 
In the form given by the eqn (3), the law of growth is similar to 

the Newton’s second law of motion: 
 

F ma ,       (4) 
 
where m is the mass of a physical object and a  is the 

acceleration.  
Newton’s law describes the dynamics of physical objects. If the 

driving force is zero, the acceleration is zero, which means that the 
physical object is either stationary or that it moves along a straight 
line with a constant velocity.  

The law of growth describes the dynamics of growing entities. 
If the driving force is zero, the growth rate is zero and the size of 
the growing entity remains constant. 

In the Newton’s law, m is the mass of the physical object. The 
larger is m the larger force has to be used to have the same 
acceleration. The equivalent parameter in the law of growth is r, 
which can be interpreted as the resistance to growth. The larger is r 
the larger must be the driving force to have the same intensity of 
growth.  

Acceleration is a well-known quantity and because of it, 
Newton’s law can be used easily to understand the dynamics of 
physical objects. Growth rate is also a well-known quantity and 
because of it, the general law of growth can be also used easily to 
understand the dynamics of growing entities.  

In its explicit form, Newton’s second law of motion can be 
expressed as 

 
2

2

( )
( )

d s t
F t m

dt
 ,      (5) 

 
where ( )s t is the trajectory of the moving object. The dynamics 

of the moving object is explained by linking the trajectory ( )s t

with the driving force ( )F t . 
Likewise, in its explicit form, the law of growth can be 

expressed as 
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1 ( )
( )

( )

dS t
F t r

S t dt
 .      (6) 

 
The dynamics of the growing entity (the mechanism of growth) 

is explained by linking the size ( )S t of the growing entity with the 

driving force ( )F t .  
For physical objects, the driving force, i.e. the mechanism of 

motion, is reflected in the acceleration ( )a t and in the 

corresponding trajectory ( )s t . If the driving force (the mechanism) 
is known, we can use it to calculate the corresponding trajectory of 
a moving object. However, if the trajectory is known but the 
driving force (the mechanism) is unknown, we can assume a 
driving force (a mechanism) and calculate the corresponding 
trajectory ( )s t . If our calculations agree with relevant data, we can 
then claim that we have explained the mechanism of the moving 
object.  

For growing entities, the driving force, i.e. the mechanism of 
growth, is reflected in the growth rate ( )G t and in the 

corresponding trajectory describing the size ( )S t of the growing 
entity. If the driving force (the mechanism) is known, we can use it 
to calculate the corresponding trajectory of a growing entity. 
However, if the trajectory is known but the driving force (the 
mechanism of growth) is unknown, we can assume a driving force 
(a mechanism of growth) and calculate the corresponding 
trajectory ( )S t . If our calculations agree with relevant data, we can 
then claim that we have explained the mechanism of growth. 

We can calculate the trajectory ( )s t of a physical object directly 
from the acceleration without using the Newton’s law. However, to 
understand why a moving object follows a certain trajectory we 
have to understand the driving force, and the link between the 
driving force and the trajectory is given conveniently by the 
Newton’s law of motion.  

Likewise, we can calculate the trajectory ( )S t of the growing 
entity directly from the growth rate without using the law of 
growth. However, to understand why the growth follows a certain 
trajectory we have to understand the driving force, and the link 
between the driving force and the trajectory is given by the law of 
growth.  

The difference between the Newton’s law of motion and the law 
of growth is that while Newton’s law is a three-dimensional vector, 
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the law of growth is a scalar, which makes the description of 
growth much simpler than the description of the dynamics of 
physical objects. 

In Newton’s law, mass m represents an intrinsic property of a 
physical object. For the law of growth, resistance to growth, r, 
might have a broader interpretation. It might represent an intrinsic 
property of a growing entity but it might also depend on exogenous 
conditions. In this respect, there is a close similarity between the 
law of growth and other similar simple and well-known laws listed 
in Table 1. 

 
Table 1. Examples of similar laws 

Name Law Explanation 
Newton’s law F ma  F – driving force; m – mass; a – 

acceleration 
Ohm’s law U RI  U – potential; R – resistance; I – current 
Hagen–Poiseuille 
law 

P rV   P – pressure difference; r – resistance; V – 
volume velocity 

Darcy’s law 
FP rV   P – pressure gradient; r – resistance to flow; 

FV – volumetric flux 

Fourier’s law T rH   T – temperature gradient; r – thermal 
resistivity; H – heat flux 

Law of growth F rG  F – driving force; r – resistance to growth; G
– growth rate 

 
For instance, the law of growth is similar to Ohm’s law, 

U RI , describing the flow of electricity. The electrical potential, 
U, plays here the role of the driving force [cf eqn. (3)] and R is the 
resistance to flow. The parameter  in the law of growth given by 
the eqn (1) plays similar role as the conductance, 1/ R , in the 
Ohm’s law. Resistance, R, is determined by the intrinsic property 
of the conducting material (electrical resistivity) but it also depends 
on the geometrical dimensions of the conducting medium (its 
length and the cross-section area). Furthermore, while resistivity 
characterises an intrinsic property of the conducting medium, it 
also depends on the temperature.  

The law of growth is also similar to the Hagen–Poiseuille law 
describing the flow of fluids through cylindrical conduits. In this 
law, pressure difference plays the role of the driving force. 
Resistance to flow depends not only on the intrinsic property of a 
given liquid (viscosity) but also on the geometrical dimensions of 
the cylindrical conduit (its length and its radius). However, 
viscosity depends also on the temperature.  
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The law of Hagen–Poiseuille is usually expressed using 
pressure difference and volume velocity but it can be also 
presented using pressure gradient and volumetric flux (volume 
velocity per unit area). In this from it resembles the Darcy’s law 
describing the flow of fluids through porous medium where the 
resistance to flow is given by the ratio of viscosity and 
permeability both depending on the temperature. 

The law of growth is also similar to the Fourier’s law describing 
the conductive heat transfer, where heat flux (energy transferred 
per units of time and area) is given by the product of conductivity 
and the temperature gradient, in the same way as the growth rate is 
given by the product of   and the driving force in the eqn (1). 
Temperature gradient plays the role of the driving force while 
thermal conductivity is equivalent to the parameter  . The inverse 
value of thermal conductivity is thermal resistivity. This quantity 
characterises the intrinsic property of the heat transferring medium 
but it also depends on the temperature.  

 
Examples of applications of the law of growth 

We shall now give a few simple examples how the law of 
growth can be used in the study of the mechanism of growth. We 
shall show how we can tailor our interpretations of growth to 
understand better its mechanism. We do not have to be restricted to 
using just a certain, limited range of models of growth. We can 
design and use our own models. We can explore a wide range of 
mechanisms of growth and check, which of them gives the best 
description of data. In general, we might have to solve the relevant 
differential equations numerically but, in many cases, we might 
have a convenient analytical solution. 

Exponential growth 
We might assume, for instance, that the driving force is 

constant, 
 
( )F t c .       (7) 
 
It is the simplest force of growth. By being constant it, 

obviously, does not depend on time or on the size of the growing 
entity. This comment might sound trivial but it is important to 
understand that for other types of growth the driving force can 
depend not only on time but also on the size of the growing entity, 
or on the combination of time and size, and that all such options 
will describe the multitude of possible models of growth.  

If we use this force in the eqn (1) we shall get 
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1 ( )

( )

dS t
k

S t dt
 ,      (8) 

 
where /k c r c  . 
The solution of this differential equation is the exponential 

function, 
 

( ) ktS t Ce        (9) 
 
where C is related to the constant of integration. 
Now, we can understand this growth a little better because we 

know where it belongs. It belongs to a specific class or the type of 
growth, for which the driving force is constant. For the same 
intensity c of the driving force, the smaller is the resistance r or the 
larger is the compliance (or growth promoting factor)  , the larger 
is the growth rate k and the faster is the exponential growth.  

The extension of the exponential growth 
Let us now use a more general example when the driving force 

is not constant but depends on time,  
 
( ) ( )F t f t .                 (10) 
 
If we use this force in the eqn (1) we shall have 
 

1 ( )
( )

( )

dS t
f t

S t dt
 .                (11) 

 
The solution to this equation is similar to the solution for the 

eqn (8): 
 

( ) exp ( )S t C f t dt 
  .               (12) 

 
Here we have a large variety of models of growth with one of 

them being the exponential model of growth characterised by 
( )f t c . We might represent ( )f t by a polynomial function or 

by any other function of our choice.  
The logistic model 

We might assume that the driving force of growth decreases 
with the size of the growing entity. An example could be the 
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growth of a tree. A tree does not grow indefinitely. It might be 
growing fast at the beginning but then it reaches a certain average 
height and does not grow. Growth of an individual person can be 
also a good example. Initially the growth is fast but eventually a 
given person reaches a certain height and stops growing. In the 
simplest case, we might assume that the driving force decreases 
linearly with the size of a growing entity: 

 
( ) ( )F t a bS t  ,                (13) 
 
where a and b are positive constants. 
 
Using the eqn (1) we then have 
 

 
1 ( )

( )
( )

dS t
a bS t

S t dt
  .               (14)  

 
This equation can be expressed as 
 

 
( )

( ) ( )

dS t
dt

A BS t S t



,                 (15) 

 
where A a and B b . 
 
The left-hand side of this equation can be easily integrated if we 

split it into a sum of two fractions: 
 

 
( ) 1 ( )

( ) ( )

B dS t dS t
dt

A A BS t A S t
 


.               (16) 

 
From now on, the integration is easy.  
 
Alternatively, we can solve the eqn (15) by using the general 

integration formula we have derived earlier (Nielsen, 2015): 
 

1
ln

dx v

u v u


  ,                (17) 

 
where bxau  , dxcv  and ad bc   . 
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The solution of the eqn (14) is represented by the sigmoid 
function: 

 
1

0

1
( ) atb b

S t e
a S a






  

    
   

,               (18) 

 
where )0(0  tSS . 
 
We can see that  
 

K
b

a
tS  )( ,               (19) 

 
where K defines the limit of growth.  

The extension of the logistic growth 
In the logistic model, the driving force decreases linearly to a 

certain limit K. However, we might have many other possibilities. 
One of them is the modified logistic model introduced by Gilpin & 
Ayala (1973). Some of the variations to the logistic growth are 
shown in Figure 1. 

 

 
Figure 1. Examples of the extensions to the conventional logistic growth. 

 
In Figure 1, the driving force represented by a decreasing 

straight line to a certain limit K represents the well-known, 
conventional logistic model of growth. However, we might have a 
force that is initially approximately constant but then is changing 
gradually to a linearly decreasing. Such a force would describe the 
initially approximate exponential growth changing seamlessly into 
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a logistic growth, which would be approaching asymptotically the 
limit K.  

We could also have a force, which could be initially decreasing 
rapidly with the size of the growing entity but after a certain time it 
would start to follow a gently decreasing trajectory. It would be an 
approximately fast logistic growth changing seamlessly into a slow 
logistic growth. 

Another alternative shown in Figure 1 is a force, which is 
initially increasing with the size of the growing entity, reaches a 
certain maximum and then starts to decrease to a certain limit K. 
This type of growth could, for instance, follow an approximately 
pseudo-hyperbolic trajectory (Nielsen, 2015). However, it would 
not increase to infinity but it would change seamlessly to an 
approximately logistic growth, approaching asymptotically the 
limit K. 

Possibilities are endless and each of them could be tried to fit 
data and find their best mathematical representation. However, if 
we introduce complicated descriptions of the driving force we 
might have a problem with explaining why we use a complicated 
description. For instance, if we can see that the growth is indeed 
initially exponential but then gradually levels off and approaches a 
certain limit K, we could easily describe such a growth 
mathematically by using a constant driving force changing 
gradually into the linearly decreasing force shown in Figure 1 but 
we would still have to explain why the force changed in such a 
way and why the growth changed from exponential to logistic. 

Further extensions 
Even though the general principle in scientific investigations is 

to use the simplest interpretations, in certain cases it might be 
necessary to try more complicated solutions and the law of growth 
offers an easy definition of such more complicated models. The 
ultimate extension would be to assume that the force of growth and 
the resistance to growth depend not only on time but also on the 
size of the growing entity. Such an assumption will probably never 
be used but it shows that we can have a practically unlimited 
number of models of growth.  

The general principle of investigation 
Even though the described here general law of growth opens 

virtually unlimited possibilities for defining and using a wide 
variety of models of growth, the general principle of scientific 
investigation is to use the simplest descriptions. In the study of the 
mechanism of growth the general principle is to use the simplest 
mechanism of growth as represented by the simplest driving force.  
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Using complicated mathematical expressions without 
understanding why we use them and without convincingly 
justifying their use makes absolutely no sense. Even if complicated 
expressions lead to a good description of data we have learned 
nothing about the mechanism of growth unless we can explain why 
such complicated mathematical descriptions are necessary.  

The initial and important step in the study of growth is to 
identify the type of growth. For instance, if we can show that the 
growth is not exponential but hyperbolic, we can then focus our 
attention on a limited range of forces or maybe even on using just 
an obvious single force to explain the mechanism of growth. 
Complicated mathematical descriptions might look impressive, 
they might create an aura of science, but simple descriptions are 
always preferable. 

 
Summary and conclusion 

Using the simplest possible assumption, we have formulated a 
simple general law of growth. We have shown that this law is 
analogous to many other simple but useful laws, one of them being 
the Newton’s law of motion. Using a few examples, we have 
shown how this simple law of growth can be used to define a 
multiplicity of models of growth, which in turn can be used to 
study the mechanism of growth. Even though this general law of 
growth allows for the introduction of a wide variety of models of 
growth, the general recommendation is to use the simplest 
descriptions of driving forces to describe and explain the observed 
phenomena.  
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7. Mechanism of hyperbolic growth explained 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
yperbolic growth gives a remarkably good description of 
population and economic data (Nielsen, 2014, 2016a, 
2016b, 2016c). It describes historical growth of the Gross 

Domestic Product (GDP) and of population, global and regional 
and even in individual countries. This conclusion is based on the 
analysis of the extensive data published by Maddison (2010). They 
describe the economic growth and the growth of population during 
the AD era, starting from AD 1 and extending to 2008. Hyperbolic 
growth describes also remarkably well the growth of global 
population in the past 12,000 years (Nielsen, 2016a). This analysis 
is supported by population data coming from a wide range of 
sources (Biraben, 1980; Clark, 1968; Cook, 1960; Durand, 1974; 
Gallant, 1990; Haub, 1995; Livi-Bacci, 1997; Maddison, 2010; 
McEvedy & Jones, 1978; Taeuber & Taeuber, 1949; Thomlinson, 
1975; Trager, 1994, United Nations, 1973, 1999, 2013).    

Hyperbolic growth of population was first noticed by von 
Foerster, Mora & Amiot (1960) close to 60 years ago and it was 
soon confirmed and accepted by other authors (Kapitza, 2006; 
Kremer, 1993; Podlazov, 2002; Shklovskii, 1962, 2002; von 
Hoerner, 1975). Hyperbolic growth turns out to be exceptionally 
stable and generally undisturbed. Many driving forces might be 
considered as influencing growth. For the growth of human 
population, and as pointed out by Kapitza (2006), all these forces 
can be arranged in such categories as industrial, economic, cultural, 
social and biological. However, he also pointed out that the simple 
formula describing the growth of the world population suggests 

H 
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that many of these forces must have been ‚suppressed by the 
process of averaging‛ (Kapitza 2006, p. 77). 

Economic growth is also described by the simple hyperbolic 
formula and in general it has been also stable over a long time in 
the past suggesting a simple explanation of the mechanism of 
growth and indicating that the growth must have been also 
controlled by single net force. It is the aim of this publication to 
identify these dominating forces of growth and to explain the 
mechanism of the historical hyperbolic growth of population and 
of the GDP.  
 

Mechanism of growth 
Mechanism of the historical economic growth 

Gross profit may depend on many factors but it obviously 
depends on the size of investment. ‚Money makes money. And the 
money that makes money makes more money‛ (Benjamin 
Franklin). Economic growth is directly related to the size of our 
investments. With the sufficiently high investment, we can build 
more retail stores, or larger retail outlets, we can buy more goods 
for sale, employ more people in our business, buy more tools and 
machinery, invest in a better equipment to increase production, 
build more houses either for sale or for rent, build more factories, 
improve agriculture, improve our services, pay for advertising, pay 
for the transportation and distribution of goods and support all 
other necessary activities aimed at generating profit. According to 
the well-known theory of Cobb & Douglas (1928), production 
yield can be described by the following simple equation: 

 

Y aL K  .       (1) 
 
Where Y is the production yield, a is the so-called total factor 

productivity, L is labour expressed as person-hours during a given 
time, e.g. during one year, K is capital input (the money invested in 
the equipment, buildings or anything else to support production), 
 and  are constants, 1   , 0 1  and 0 1  . 

In this equation, wealth generates wealth or money makes 
money not only through the investment K, which could be passed 
from one year to another, but also through the ongoing costs of 
labour.  

In essence, therefore, the right-hand side of the eqn (1) 
represents the investment of a certain amount of money to produce 
profit. The left-hand side does not represent the total wealth but the 
increase in wealth, which could be the annual increase. This 
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increase is proportional to the money locked as K and to the annual 
investment of money expressed as L. We need money to make 
money. We need wealth to generate wealth.  

In order to explain the mechanism of economic growth we shall 
look at it from the point of view of a driving force, because driving 
force represents the mechanism of growth. For the economic 
growth, it is the net market force. We can have many market forces 
but in order to explain the mechanism of growth it is best to start 
with the simplest assumption and make it complicated only if 
necessary. This is the fundamental principle in scientific research, 
known as the Occam’s razor or the law of parsimony: Entia non 
sunt multiplicanda praeter necessitatem. 

The simplest way to describe mathematically the driving force 
of economic growth is to assume that it is directly proportional to 
the invested wealth. The larger is the circulated wealth, the greater 
wealth can be produced. 

 
F cW ,       (2) 

 
where W is the total existing wealth and c is a constant. 
It is essential to understand that we are dealing here with 

average quantities. In explaining economic growth of a country or 
region or of the world we are not dealing with individual economic 
units but with the whole assembly of these units. The eqn (2) 
describes the average force of economic growth. The quantity W 
represents the total wealth of a country, a group of countries or of 
the whole world, expressed usually as the GDP and c could 
represent the average fraction of this wealth used to drive 
economic growth. The larger is the already generated wealth, the 
larger is the driving force of economic growth when this wealth is 
invested to produce more wealth. Wealth generates wealth. This 
principle and this process appears to be well known and universally 
accepted. However, this principle has been never expressed in 
mathematical form, which could be compared directly with data.It 
was never used to describe economic growth trajectories. It was 
never used to describe and explain the mechanism of the historical 
growth of the GDP. 

In our earlier publication (Nielsen, 2016d), we have formulated 
a general law of growth: 

 
F rG ,        (3) 

 
where G is the growth rate and r is the resistance to growth. 
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The advantage of using this simple law of growth is that it links 
the force of growth with trajectories of a growing entity. The force 
of growth represents the mechanism of growth and the law of 
growth allows for defining this force, i.e. for defining the expected 
or postulated mechanism, and to compare it with data as described 
by growth trajectories. This simple law allows for a mathematical 
formulation of postulated mechanism and for translating this 
mechanism into growth trajectories, which can be readily tested by 
data. Thus, this law allows for testing various mechanisms of 
growth by data. 

The growth rate G is defined as 
 

1 dW
G

W dt
  ,        (4) 

 
where t is time.  
If we now insert the postulated driving force of economic 

growth defined by the eqn (2) into the eqn (3), we shall get the 
following equation describing economic growth. 

 
1 dW

kW
W dt

 ,       (5) 

 
where /k c r . 
We have now linked the driving force with economic growth 

trajectory. The parameter k is inversely proportional to the 
resistance to growth r and could be called the compliance factor or 
simply the compliance. In the formulation of the general law of 
growth (Nielsen, 2016d) we have defined 1/ r as compliance. 
However, k differs only by a constant c so it plays the same role as 
1/ r . The larger is the parameter k, the more efficient is the 
generation of wealth and the faster is the growth of W. We could 
easily extend this model by considering that c or r or both of them 
depend on time, but at this stage it is preferable to use the simplest 
possible assumption.  

The eqn (5) does not describe the growth of an individual 
economic unit but the average economic growth of a country, 
region or globally. Economic growth of a single unit might be 
affected by many random forces but for a large assembly of such 
units, random forces might be averaging out. If they are not or if 
there is some other strong force not included in our simple 
assumption, then our predictions of growth will be contradicted by 
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data and we shall have to modify our assumed mechanism of 
growth. We can check whether our assumption is correct by 
comparing the calculated trajectory with data.  

The eqn (5) can be solved using the substitution 1W Z  . Its 
solution is 

 
1

W
C kt




.        (6) 

 
This is hyperbolic growth. Data describing historical economic 

growth (Maddison, 2010) and their analysis (Nielsen, 2016b) show 
that our choice of the driving force was correct and that there is no 
need to assume the presence of any other type of forces. An 
example of comparing calculations with data is presented in Figure 
1. 

 
Figure 1. World economic growth as described by the Gross Domestic 

Product (Maddison, 2010) compared with hyperbolic distribution. 
Single and simple driving force explains the mechanism of growth. This 
force was so strong that even the Industrial Revolution had no impact on 

changing the growth trajectory. 
 

Data and their analysis show that the historical economic 
growth was indeed hyperbolic and now we can understand why. 
Historical economic growth was prompted by a single dominant 
force directly proportional to the existing volume of wealth, 
expressed usually as the GDP. Hyperbolic economic growth 
describes the net historical growth of a large number of economic 
units. The larger was the existing wealth of a country or a region or 



R.W. Nielsen, Evidence-based Unified Growth Theory… Vol.3                         KSP Books 

173 

globally, the larger was the driving force of economic growth. 
Currently, economic growth is no longer hyperbolic. It is no longer 
controlled by the simple force given by the eqn (2). Driving forces 
appear now to be now more complicated. 

It should be noted that the growth described by compound 
interest is of a different kind. It is not a spontaneous and 
unconstrained growth controlled by the net driving force 
proportional to the size of the existing wealth. The force 
controlling the growth described by compound interest is 
constrained. It is dictated by human-imposed regulations. No bank 
in the world would pay interest increasing in the direct proportion 
to the balance of our deposits. For the money deposited in the 
bank, interest varies within a small range of values and 
consequently it is approximately constant. This type of growth is 
described by a constant or approximately constant force of growth, 
which generates exponential growth, the growth described by 
compound interest. Likewise, no bank in the world would give a 
loan with interest decreasing with the decreasing balance. These 
two types of transactions are controlled by man-made regulations. 
They are not controlled by the assumed by us, and confirmed by 
data, force describing the spontaneous and unconstrained historical 
economic growth. However, it does not mean that the current 
economic growth cannot be exponential. It can and it often is 
because, as indicated by data, the current economic growth is no 
longer prompted by the historically prevailing single force.  

Mechanism of the historical growth of population 
The most obvious and essential force, which has to be 

considered to explain the mechanism of the growth of population is 
obviously the biologically-controlled or prompted force of 
procreation, which is defined here as the difference between 
biologically controlled birth and death rates. Other forces might be 
included, if necessary, but this force is indispensable.  

Let us assume that on average, the biologically controlled force 
of procreation is constant per person. Biologically controlled birth 
and death rates may vary over time but we assume that on average 
and per person the difference remains the same. This is a very 
simple assumption but again in science it is always advisable to use 
the simplest possible assumptions and make them more 
complicated only if necessary. Under this assumption, 

 
F

c
S
 ,        (7) 
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where F is the biologically controlled force of procreation, S is 
the size of the population and c is certain average constant. It 
describes how, on average, each person contributes to the growth 
of population. 

If we use this force in the general law of growth given by the 
eqn (3) we shall get 

 
cS rG ,        (8) 

 
where G is now given by 
 

1 dS
G

S dt
 ,        (9) 

 
which leads to the following differential equation describing the 

growth of population  
 

1 dS
kS

S dt
 .                  (10) 

 
Solution to this equation is 
 

1
S

C kt



.                 (11) 

 
It is also a hyperbolic distribution, which gives excellent 

description of data (Nielsen, 2016a, 2016c). Example is shown in 
Figure 2. 
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Figure 2. Growth of the world population (Maddison, 2010) compared 
with hyperbolic distribution. Single and simple driving force explains the 
mechanism of growth. This force was so strong that even the Industrial 

Revolution had no impact on changing the growth trajectory. 
 

The mechanism of historical hyperbolic growth of population is 
explained as an unconstrained growth prompted solely by the 
biologically controlled force of procreation. This force is given by 
the average difference between biologically controlled birth and 
death rates and is assumed to be constant per person. This simple 
mechanism explains global and regional historical growth of 
population (Nielsen, 2016a, 2016c). 

Mechanism of demographic transitions 
If we include in our analysis a wider range of data describing 

the growth of the world population (Biraben, 1980; Clark, 1968; 
Cook, 1960; Durand, 1974; Gallant, 1990; Haub, 1995; Livi-Bacci, 
1997; Maddison, 2010; McEvedy & Jones, 1978; Taeuber & 
Taeuber, 1949; Thomlinson, 1975; Trager, 1994, United Nations, 
1973, 1999, 2013) we shall soon discover certain interesting details 
showing two demographic transitions in the past and the current 
ongoing transition (Nielsen, 2016a). 

As we have shown earlier (Nielsen, 2016a), growth of the world 
population was hyperbolic between 10,000 BC and 500 BC, 
between AD 500 and 1200, and between AD 1400 and 1950. 
During these large sections of time, taking approximately 90% of 
the past 12,000 years, the mechanism of growth of population can 
be explained as being prompted by the simple, biologically 
controlled, force of procreation, which was on average constant per 
person. All other forces, even if present, had no influence on the 
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growth of global population. They were either too weak or they 
were averaged out.  

The time when the prevailing hyperbolic growth was 
significantly disturbed in the past 12,000 years was only between 
500 BC and AD 500, between and AD 1200 and 1400 and now 
after around 1950. These are the only recorded demographic 
transitions in the past 12,000 years. The first transition was from a 
fast to a slow hyperbolic trajectory. The second transition was from 
a slow to a slightly faster trajectory and the current transition is to a 
yet unknown trajectory. 

The first transition appears to coincide with the massive and 
widespread changes in the style of living associated with the 
intensified changes in the political landscape in various parts of the 
world, graphically and comprehensively explained by Teeple 
(2002). It is also probably not without significance that this 
transition coincides with the rise and fall of Roman Empire, the 
longest lasting political system in history, which by the first 
century BC ruled already over vast areas of land surrounding Mare 
Nostrum (the Mediterranean). After its fast expansion and after 
subjugating many independently-living societies under its rule, this 
powerful and seemingly unconquerable political structure 
disintegrated into many fragments of independent countries. 
However, during that long time, significant changes in the political 
landscape were also occurring outside the realm of the Roman 
Empire.  

Between 10,000 and 500 BC, growth of population is described 
by a fast-increasing hyperbolic trajectory, as defined by the 
parameter k. After the BC/AD transition, the growth was directed 
to a significantly slower trajectory characterised now by the 
parameter k, which was about 6.4 times smaller. (The resistance to 
growth was now significantly larger.) Thus, the proposed 
explanation of the BC/AD transition is that it was caused by strong 
exogenous forces of political nature, forces causing the wide-
spread and profound changes in the style of living. During that 
time, the resistance to growth was changing and eventually settled 
along a significantly larger value. 

Demographic transition between AD 1200 and 1400 is much 
easier to explain. During that time, there was a temporary delay in 
the growth of human population. When closely inspected, it can be 
found that this delay coincides with the most unusual convergence 
of demographic catastrophes. It appears to have been caused by a 
combined impact of five large demographic catastrophes (Nielsen, 
2016a):  Mongolian Conquest (1260-1295) with the total estimated 
death toll of 40 million; Great European Famine (1315-1318), 7.5 
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million; the 15-year Famine in China (1333-1348), 9 million; 
Black Death (1343-1352), 25 million; and the Fall of Yuan 
Dynasty (1351-1369), 7.5 million.  

During this transition, hyperbolic growth changed to a slightly 
faster trajectory, characterised by k only about 30% higher. This is 
the only available evidence that the growth of human population 
might have been affected by demographic catastrophes. However, 
their combined impact was small. The transition to a faster 
trajectory quickly compensated for the loss of time in the growth of 
population. This quick process of recovery could be explained by 
the regenerating impacts of Malthusian positive checks (Malthus, 
1798; Nielsen, 2016f). 

Currently, after a minor boosting around 1950, the growth of 
human population is slowing down. The possible explanation of 
the current diversion to a slower trajectory appears to be of 
endogenous nature associated with human choices and motivations, 
voluntary or enforced. While in many countries there is an 
increasing tendency to opt for smaller families, in China, small 
families have been enforced by legislation. This additional force 
appears to be the force of preventative checks (Malthus, 1798). 
They may have been active in the past but they were too weak to 
shape the growth trajectories.  

So, the three demographic transitions in the past 12,000 years, 
including the ongoing transition, can be probably explained by 
three different forces: political forces active during the first 
transition, which lasted for about 1000 years; forces of 
demographic catastrophes, which were active for about 200 years; 
and the endogenous forces of personal choices, either voluntary or 
enforced by law during the current transition. 

It would be difficult to describe mathematically all these 
complex forces. However, as already mentioned, the first two 
transitions were between hyperbolic trajectories characterised by 
different k factors. During these transitions, the k factor was 
changing. During the first transition, k factor dramatically 
decreased, which means that the resistance to growth dramatically 
increased. It increased by a massive factor of about 6.4. During the 
second transition, k factor slightly increased. The resistance to 
growth decreased by about 30%. The description of the past and 
present demographic transitions can be reduced to the description 
of changes in the compliance factor or in the corresponding 
resistance to growth. Resistance to growth was changing and we 
can study how it was changing. Such a study will not give a 
complete mathematical explanation of the mechanism of 
demographic transitions but will reduce this explanation to a single 
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parameter: to changes in the compliance factor k or in the 
corresponding resistance to growth.   

We can study these changes using a slightly modified eqn (8). If 
we assume that the resistance to growth was dependent on time (or 
equivalently that k depended on time), then we shall have the 
following equation describing growth trajectories during 
demographic transitions:  

 
1 ( )

( ) ( )
( )

dS t
k t S t

S t dt
 .                (12) 

 
Now, for better clarity, we are showing explicitly the 

dependence on time. 
Solution of this equation is 
 

1

( ) ( )S t k t dt


  
  .                 (13) 

 
If we assume that ( )k t is represented by an n-order polynomial,  
 

0
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n

i

i

i

k t a t


 ,                  (14) 

 
then 
 

1
1

0

( )
n

j

j

j

S t b t






 
  
 
 ,                 (15) 

 

where 
1 /j jb a j  for 0j  and 0b is the constant of 

integration. 
Even though we cannot describe mathematically the mechanism 

of growth during the demographic transitions, we can understand 
them a little better by studying changes in the growth factor ( )k t , 
whose reciprocal values represent resistance to growth. Results are 
shown in Figure 3. The corresponding parameters are listed in 
Table 1. These calculations do not explain why the resistance to 
growth was changing (they do not explain the mechanism of the 
demographic transitions) but at least they are describing how the 
resistance to growth (or the compliance factor) was changing. 
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In the lower section of Figure 3, we show the growth trajectory 
during the AD era. It is made of two hyperbolic trajectories, 
between AD 500 and 1200 and between AD 1400 and 1950. The 
remaining segments of time represent demographic transitions 
described by the reciprocal values of polynomials, as given by the 
eqn (15). This section shows also one of the projected trajectories. 

In the middle section, we show the overall fit to the data, which 
is represented by hyperbolic trajectories between 10,000 BC and 
500 BC, between AD 500 and 1200 and between AD 1400 and 
1950. The remaining segments of time represent demographic 
transitions described by the reciprocal values of polynomials [see 
eqn (15)]. 

In the top section, we show time dependence of the compliance 
factor ( )k t , which can be calculated using the fitted ( )S t . As we 
can see from the eqn (13) 

 
( )

( )
dZ t

k t
dt

  ,                  (16) 

 

where 1( ) ( )Z t S t . 

In Figure 3, we show the compliance factor ( )k t only down to 
2000 BC. However, this factor was constant between 10,000 BC 
and 500 BC but then started to decrease. The compliance was 
decreasing, the resistance to growth was increasing and the growth 
of population was slowing down. Around 80 BC, the compliance 
factor decreased to zero, the resistance to growth increased to 
infinity and the growth of population reached its maximum. The 
compliance factor continued to decrease and the size of population 
was decreasing. When the compliance factor reached its minimum, 
around AD 200, there was a turning point in the growth of 
population. The compliance factor was still negative but now it 
was increasing. Slowly, the deceleration in the growth of 
population was decreasing. Around AD 450 the compliance factor 
reached its second value of zero. The size of the population 
reached a minimum value and started to increase. By around AD 
500, this demographic transition was over and the growth of 
population settled again along an unconstrained hyperbolic 
trajectory, but now is was a significantly slower trajectory 
characterised by a significantly smaller compliance factor or 
equivalently by the significantly larger resistance to growth. 
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Figure 3. Growth of the world population in the past 12,000 including 

mathematical description of the past two demographic transitions between 
hyperbolic trajectories and the ongoing transition to a yet unknown 

trajectory.  
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Table 1. Parameters describing the growth trajectory of the world 
population in the past 12,000 years. 

Unconstrained, hyperbolic growth 
(~89% of the total combined time) 

k const  
 

Demographic transitions 
(~11% of the total combined time) 

0

( )

n
i

i

i

k t a t



  

10,000 BC – 500 BC 

2.282a   ; 
22.210 10k    

500 BC – AD 500 
3

0 2.347 10a    , 

5
1 2.659 10a    , 

8
2 7.479 10a    

AD 500 – 1200 

6.940a  ; 
33.448 10k    

AD 1200 – 1400 

0 1.022a   , 3
1 2.618 10a   , 

6
2 2.198 10a    , 

10
3 6.068 10a    

 
AD 1400 – 1950 

9.123a  ; 34.478 10k    

1950 – present 

0 1.820a   , 3
1 1.891 10a   , 

7
2 4.899 10a    

 
The onset of the second demographic transition occurred 

around AD 1200. Again, the compliance factor started to decrease 
and the growth of population started to slow down and even briefly 
decline. However, the growth quickly recovered and by around AD 
1400 this short-lasting transition was over. Growth of population 
resumed its spontaneous and preferred hyperbolic trajectory, which 
was even a little faster than before, as indicated by the slightly 
larger k factor.  

Around 1950, the compliance factor was boosted but only for a 
short time. The growth of population started to be a little faster 
than before, but very soon this temporary boosting was halted and 
the growth of population started to slow down as expressed in the 
continually decreasing compliance factor k.  

 
Characteristic properties of hyperbolic growth 

Hyperbolic growth might be more common than we think. In 
order to understand this type of growth it is useful to compare it 
with other processes and particularly with the more familiar 
exponential growth. 

For the exponential growth, the size added per fixed unit of 
time is directly proportional to the total size of the growing entity, 
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e.g. to the size of the population or the GDP (if they are assumed to 
increase exponentially). If the total size doubles, then the added 
size per unit of time also doubles. For the hyperbolic growth, the 
size added per fixed unit of time depends quadratically on the total 
size of the growing entity. If the size of the growing entity doubles, 
the added size per fixed unit of time quadruples. If the size triples, 
the added size per fixed unit of time increases nine-folds. 

For the exponential growth, the doubling time is constant. For 
the hyperbolic growth, it decreases linearly with time. As the size 
of the growing entity increases, the doubling time decreases. Each 
consecutive doubling time is twice as small as the immediately 
preceding doubling time. So, for instance, if at a certain stage of 
growth, the doubling time is 24 years, then after 24 years it will be 
reduced to 14 years, after 14 years to 7 years, and so on. That is 
why, hyperbolic growth, or any other type of growth, but 
exponential, should never be characterised by the doubling time. 
Constant doubling time applies exclusively to the exponential 
growth.  

For the exponential growth, the total driving force is constant. 
No matter how large is the growing entity, the force remains 
unchanged. Driving force per single unit decreases exponentially. 
If exponential growth were to describe economic growth then the 
driving force per unit of invested wealth, e.g. the driving force per 
invested dollar, would decrease exponentially with the size of the 
investment. The potential to generate economic growth per dollar 
would be decreasing exponentially with the size of the GDP. If 
exponential growth were to describe the growth of population, then 
the biologically driven force of procreation (the difference between 
the biologically generated or controlled birth and death rates) per 
person would be decreasing exponentially. 

For the hyperbolic growth, the total driving force increases 
hyperbolically, i.e. in the direct proportion with the size of the 
growing entity, which means that the driving force per unit or per 
element of the whole assembly of hyperbolically growing entity, 
e.g. per person or per dollar, is constant. Each unit, on average and 
for a large assembly of growing units, contributes equally to 
support growth. For the hyperbolic growth, the potential of each 
invested unit of wealth, e.g. the potential of each dollar to create 
more wealth is constant. It does not depend on the size of invested 
wealth; it does not depend on the size of the GDP. For the 
hyperbolic growth of human population, the force of procreation 
per person remains constant; it does not decrease with the size of 
population.  
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For the hyperbolic growth, each element, each added 
component, makes on average, a fixed contribution to the overall 
driving force. Individual contributions may vary, but on average 
the contribution of each component is constant over time. The 
larger is the size of the growing entity the larger is the combined 
force pushing the growth forward. It is the growth that propels 
itself in a very specific way. In the unconstrained hyperbolic 
growth, the growth is propelled by the approximately equal 
contribution of all individual members of the growing entity. It is 
an interesting and distinct process where growth generates growth 
in a very specific way, i.e. where the driving force of growth per 
person or per unit of the growing entity is constant. In contrast, for 
the exponential growth, the combined driving force is constant but 
the driving force per unit of the growing entity decreases 
exponentially.  

Now, we can see that there might be more examples of 
hyperbolic growth. Take, for instance, technology or knowledge. 
Knowledge generates knowledge by stimulating new ideas. 
Technology generates technology by stimulating new solutions to 
technological problems. This is the well-known process, which 
even a single person can experience. The more we learn, the easier 
it is to learn more. The more problems we solve, the easier it is to 
solve new problems. Ideas create new ideas, solutions create new 
solutions, and knowledge creates new knowledge. It is, therefore, 
not surprising that knowledge and technological innovations 
appear to have been increasing hyperbolically (Kurzweil, 2006; 
Vinge, 1993). There is a close correlation between the growth of 
population and technology (Kremer, 1993). The two processes are 
similar but they are prompted by different kind of forces.  

Technology is certainly not prompted by the force of 
procreation (the biologically prompted sex drive and the 
biologically prompted process of aging and dying). The growth of 
population is obviously controlled by these processes. It could be 
also controlled by some additional forces but the historical growth 
of population shows that these other forces were either too weak or 
that they were averaging out.  

Technology is prompted by concepts, solutions and by research 
activities. Growth of population is definitely not prompted by 
technological concepts, solutions and by research activities but by 
the force of procreation. Economic growth is similar to the growth 
of population but it is obvious that economic growth is not 
prompted by the biologically controlled force of procreation. 

Another example of hyperbolic growth could be the growth of 
biodiversity. We could expect that biodiversity should generate 
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greater biodiversity through competition, adaptation and biological 
solutions based on life-supporting mutations. We can also expect 
that the force driving the growth of biodiversity is proportional to 
the existing biodiversity. If it is directly proportional, then the 
growth of biodiversity is hyperbolic. Even if we consider minor or 
major extinctions of species one might expect that over a 
sufficiently long time the prevailing trend might be hyperbolic. If 
we think in terms of driving forces, we could probably identify 
other examples of hyperbolic growth. We can also understand 
easier the distinctions between various types of growth. 

For processes described by hyperbolic trajectories, each system 
will be prompted by its own mechanism reflected in a specific 
driving force, but each system will be prompted by the same type 
of force. In each case, the force per unit of the growing entity will 
be constant. Hyperbolic similarities and close correlations between 
hyperbolic systems should never be interpreted as necessarily 
reflecting precisely the same mechanism of growth represented by 
precisely the same driving force. In general, each hyperbolic 
process will be expected to be propelled by a distinctly different 
force reflecting a distinctly different mechanism, but all these 
forces will be of the same type: their intensity will increase in the 
direct proportion to the size of the growing entity; their intensity 
per person, per biological object, per unit of measurement (such a 
dollar, for instance) will be always constant during the entire time 
of the unconstrained growth.  

Hyperbolic growth is characterised by singularity where the 
growth escapes to infinity at a fixed time. Such a growth might be 
deemed impossible. However, historical economic growth and 
historical growth of populations were hyperbolic so obviously, 
they were possible. Growth trajectories can change and there is 
nothing unusual about that. A new force may be added to the 
existing force or the previously active force might be replaced by a 
new force. In the growth of global population there were only two 
instances in the past 12,000 years when a new force of growth was 
added temporarily to the force of procreation. First time, this 
additional force appears to be of political nature changing radically 
and on a large scale the style of living. Second time, it was in the 
form of demographic catastrophes, the only known case when 
demographic catastrophes were reflected in the trajectory 
describing the growth of population. Currently, there is also a 
diversion to a new trajectory. The force of procreation continues to 
be active but the new and significant force added to the force of 
procreation appears to be the force of preventative checks 
(Malthus, 1798). 
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It is also absolutely not necessary to imagine that in order to 
avoid the problem of singularity we have to find some 
mathematically-described force, which over a certain time would 
mimic hyperbolic growth but at around a certain time would 
gradually become non-hyperbolic, and that this unusual and yet 
unknown mathematical distributions would also reproduce the 
growth of human population. It is absolutely not necessary ‚to 
eliminate the unrealistic ‘demographic explosion’ from the model‛ 
(Karev & Kareva, 2014, p. 76), because it is not at all unusual for a 
trajectory to remain undisturbed over a certain time but then to be 
diverted to a new trajectory. The mechanisms of growth can 
change or can be modified by adding new type of force to the 
already existing force. We do not have to imagine that we should 
have a single force, which over a long time would describe 
hyperbolic growth and then would also describe a diversion to a 
new, non-hyperbolic growth. Karev attempted to find such a force 
but failed (Karev, 2005). He tried two such forces but they did not 
explain the mechanism of growth because they were 
incomprehensibly complicated (Nielsen, 2016g). They were also 
unsuccessful in describing the growth of population. A single and 
easy to understand force of procreation results in a far better 
description of data.   

Current growth of population and economic growth is no longer 
described so consistently by a single type of force. For instance, 
economic growth in Greece was logistic over a certain time but 
then it changed to a pseudo-hyperbolic growth with singularity in 
2017 (Nielsen, 2016h). This fast growth could not have been 
supported in any way and it collapsed. The current global 
economic growth is exponential (Nielsen, 2016i). Such a growth is 
insecure because it does not lead to a maximum or to a safe and 
sustainable level of the GDP. It continues to grow until it can be no 
longer supported.  

The current global growth of population is less clearly defined 
and its projections are less certain. Analysis of the growth rate 
shows that growth of population may reach a certain maximum but 
it may also continue to increase for as long as it can be supported 
by the availability of natural resources (Nielsen, 2006). 

 
Summary and conclusions 

Historical economic growth and historical growth of population 
were hyperbolic (Nielsen, 2016a, 2016b, 2016c). We have 
explained their mechanism by postulating simple forces of growth. 
Hyperbolic growth is mathematically simple and its mechanism of 
growth is also simple.  
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For the economic growth, the mechanism of the historical 
hyperbolic growth is explained by the net market force, which on 
average was directly proportional to the invested wealth usually 
expressed as the Gross Domestic Product. For the growth of 
population, the mechanism of the historical hyperbolic growth is 
explained by the biologically prompted force of procreation 
defined as the difference between the biologically prompted birth 
rate and the biologically controlled process of aging and dying. It is 
assumed that this force was on average constant per person. 

We do not explain the net market force and neither do we 
explain the biological force of procreation. We do not dissect these 
processes, isolate their components, study minute interactions 
between the mand then put them together to derive the net driving 
force. We only describe these forces in the simplest possible way 
using simple mathematical expressions based on simple and readily 
acceptable assumptions. We then use these simplified forces to 
explain the mechanisms of growth.  

This type of approach is common in scientific investigations. 
For instance, we do not understand the force of gravity. We do not 
really know what it is. However, we can represent this force using 
a simple mathematical expression (Newton, 1687) and then use it 
to explain the mechanism of the movement of celestial by, we can 
land a man on the Moon and bring him back to Earth, explore our 
solar system, land our probes on Mars, detect the presence of the 
invisible matter and in general explain the dynamics of the 
Universe.   

We do not understand nuclear forces but we can describe them 
mathematically and use this description to study, for instance, the 
mechanism of nuclear reactions and nuclear structure (Nielsen, 
2016). Nobody understands quantum mechanics (Feynman, 1967) 
but this does not stop us from describing mathematically various 
quantum phenomena, explain them and even use the acquired 
knowledge to apply it, for instance, in quantum computing or 
cryptography. We do not understand the weak force and yet we can 
explain the process of radioactive decay and use radioactive 
isotopes in many applications, primarily in medicine but also 
industry and agriculture.  

We do not understand why matter reveals itself as mass or 
energy. We do not understand the intricate details of this peculiar 
phenomenon but we can describe it by a simple and well-known 
equation (Einstein, 1905a). We can then use this simple equation to 
calculate how much energy will be released if a certain amount of 
mass manifests itself as energy. We can use this knowledge, 
combined with our fundamental knowledge of nuclear processes, 
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to explain the mechanism of fusion and fission reactions. We can 
then go a step further and construct (unfortunately) a nuclear bomb 
and (maybe similarly unfortunately) to construct a controversial 
nuclear reactor to produce energy. However, we can also explore 
how this huge amount of energy locked in the mass could be used 
in a controlled fusion reaction and maybe at last to construct a 
clean and practically inexhaustible source of energy. We can also 
use this simple mass-energy relation to explain the mechanism of 
the production of energy in our Sun and in the distant stars. We do 
not know everything but what we already know can be useful. 

We do not understand why electromagnetic radiation reveals 
itself as waves or particles, the property, which turns out to apply 
not only to electromagnetic radiation but also to all matter, but we 
can describe this relationship by simple mathematical expressions 
(Einstein, 1905b; de Broglie, 1924) and explain not only why the 
rainbow looks so nice but also the strange phenomenon of 
photoelectricity (Einstein, 1905b). Einstein is well known for his 
theory of relatively and for his mass-energy equation but he 
received his Nobel Prize for explaining photoelectricity, which 
demonstrates that light can manifest itself as being made of tiny 
particle.  

We may not know all the details how nature works but we can 
still explain many phenomena we observe and even represent our 
explanations by useful and often simple mathematical expressions. 
We might not be able to explain everything. We might not answer 
every single question but we can still explain many phenomena in 
a satisfactory manner and answer many questions. A deeper 
understanding might come much later but only if we make sure 
that our current knowledge is not based on illusions and 
impressions but on the methodically checked interpretations of 
observed phenomena. 

The fundamental principle in scientific research is to look for 
the simplest explanations of observed phenomena. These few 
examples from physics show that even complicated processes can 
be often represented by simple mathematical descriptions and that 
the interpretation of their mechanism can be significantly 
simplified. 

Distributions describing historical growth of population and the 
historical economic growth look complicated, so complicated that 
they are routinely interpreted as being made of two distinctly 
different components, slow and fast, stagnant and explosive, each 
component governed by distinctly different and complicated 
mechanisms. The illusion is so persuasive that even most 
prominent researchers are easily misguided, particularly if the data 
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are not properly analysed or if they are presented in a grossly 
distorted way (Ashraf, 2009; Galor, 2005a, 2005b, 2007, 2008a, 
2008b, 2008c, 2010, 2011, 2012a, 2012b, 2012c; Galor & Moav, 
2002; Snowdon & Galor, 2008). 

The first indication that these distributions are not complicated 
is demonstrated when they are mathematically analysed. The 
analysis is trivially simple (Nielsen, 2014) and it shows that these 
distributions are hyperbolic (Nielsen, 2016a, 2016b, 2016c). 
Hyperbolic distributions look complicated but they are described 
by an exceptionally simple mathematical formula: a reciprocal of a 
linear function containing just two adjustable parameters.  

This remarkable simplicity of hyperbolic distributions 
representing the historical growth of population and the historical 
economic growth suggests a simple mechanism of growth. We 
have now demonstrated that the mechanism of these two processes 
is indeed remarkably simple. They were prompted by the well-
known and simple forces. 

Data describing the growth of global population allow for a 
study of growth over an exceptionally long time. They show that 
for the most part of the past 12,000 years, growth of global 
population was hyperbolic: between 10,000 BC and around 500 
BC, between around AD 500 and 1200 and between around AD 
1400 and 1950. The remaining time of the past 12,000 years was 
taken by demographic transitions: between around 500 BC and AD 
500, between around AD 1200 and 1400, and from around 1950.  

We have proposed the explanation of the mechanism of these 
transitions. The first transition is explained by the dramatic and 
wide-spread changes in the style of living associated with 
significant changes in the political landscape. The second transition 
is explained as being caused by the combined impact of five major 
demographic catastrophes. This is the only example when 
demographic catastrophes appear to have had impact on shaping 
the population growth trajectory. However, this impact was 
insignificant. The slight delay in the growth of population was 
soon compensated because the growth of population was diverted 
to a slightly faster trajectory. We can explain the mechanism of this 
quick recovery by the regenerating effects of the Malthusian 
positive checks (Malthus, 1798; Nielsen, 2016f). The mechanism 
of the ongoing transition is explained by the Malthusian 
preventative checks.  

A partial mathematical explanation of these transitions is by 
assuming that the growth of human population was still prompted 
by the biologically controlled force of procreation but that the 
resistance to growth (or equivalently the compliance factor) was 
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changing. This simple assumption does not allow us to predict 
growth trajectories during demographic transitions but only to 
determine how the resistance to growth (or compliance factor) was 
changing during each transition. 

Currently, neither the growth of population nor the economic 
growth can be described by the historically simple driving force. 
Generally, we have to use different descriptions for each specific 
case. For instance, current global economic growth can be 
described by a relatively simple but non-hyperbolic trajectory, 
which is now converging into the exponential growth (Nielsen, 
2016i). Economic growth in Greece was logistic but then it was 
converted to a fast-increasing pseudo-hyperbolic growth, which 
inevitably resulted in the economic collapse because it came too 
close to the point of singularity (Nielsen, 2016h). Global growth of 
population can be described using different trajectories, each 
trajectory giving different prediction of growth (Nielsen, 2006). 

  The general law of growth (Nielsen, 2016d) helps to 
understand mechanisms of growth because it links growth 
trajectories with driving forces, which are usually easier to 
visualise and to understand. We have used this general law of 
growth and the simplest driving forces to explain the mechanism of 
the historical growth of population and the historical economic 
growth.  
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8. New direction for the economic and 
demographic research 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. There is no need to explain the mechanism of the so-called 
Malthusian stagnation, or the Epoch of Malthusian Stagnation, 
as Galor called it, because there was no stagnation. Growth of 
the world population and economic growth in the past 
2,000,000 years were steadily increasing along the 
predominantly hyperbolic trajectories. There were only two 
major transitions and one minor disturbance in the past 
2,000,000 years. There is also now a slow transition to a slower 
pattern of growth, but there was never a prolonged epoch of 
stagnation that needs to be explained. This supposed stagnation 
is based on pure imagination stimulated by the misinterpretation 
of hyperbolic growth, which is slow over a long time but never 
stagnant.  

2. There is no need to explain the so-called Malthusian trap. 
Malthus never proposed any form of a trap in the growth of 
population and in economic growth. This concept was invented 
later and for no justified reason the name of Malthus was 
attached to it. For no justified reason his name was also 
attached to the erroneous concept of stagnation. Malthus was 
cautious with his observations and it is not certain whether he 
would be pleased by this dubious distinction. There was no trap 
in the growth of population and in economic growth. 

3. There is no need to explain the mechanism of Galor’s three 
regimes of growth because they did not exist. This concept is 
based on fantasy reinforced by suitably distorted representations 
of data. His three regimes are consistently contradicted by data.  
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4. There is no need to explain a sudden increase in the growth of 
population or in economic growth labelled as takeoffs or in any 
other similar way, which is supposed to describe a sudden 
change in the pattern of growth, because there were no such 
sudden accelerations. Hyperbolic growth is slow over a long 
time and fast over a short time but there is no sudden transition 
from a slow to fast growth. There is, therefore, no need to 
explain also the so-called differential takeoffs, which were 
supposed to describe different time of takeoffs in the growth in 
more developed and less developed regions, as claimed by 
Galor, because there were no takeoffs. The concept of takeoffs 
is based on the incorrect interpretation of hyperbolic growth but 
the concept of differential takeoffs is harder to explain. It adds a 
new flavour to the incorrect interpretation of growth. Takeoffs 
or differential takeoffs never happened. There is, therefore, no 
need to explain their mechanism. There is also no need to 
explain the transition from stagnation to growth, claimed by 
Galor, because there was no such transition at any given time. If 
this claimed transition is supposed to describe the transition 
from a slow to fast growth, then it did not happen at any given 
time but monotonically over a long time. The time of the 
transition from slow to fast hyperbolic growth takes place over 
the whole range of hyperbolic growth. It is impossible to 
determine the time of this transition. 

5. There is no need to explain the boosting effects of the Industrial 
Revolution because Industrial Revolution had no impact on 
shaping the economic growth trajectories and trajectories 
describing the growth of population. There was no boosting in 
the growth trajectories even in Western Europe and even the 
United Kingdom, the epicentre of the Industrial Revolution. 
This event introduced many changes in socio-economic 
conditions but it did not change trajectories describing the 
growth of population or economic growth. 

6. There is no need to explain Galor’s mysteries of growth 
because there are no mysteries. His mysteries of growth were 
created by his habitual distorted representations of data. 

7. There is no need to explain the sudden spike in the growth rate 
describing growth of income per capita, as claimed by Galor, 
because there was no such sudden spike. Growth rate of income 
per capita was increasing monotonically without a sudden 
boosting at any time. 

8. There is no need to explain the ‚mind boggling‛ and 
‚perplexing phenomenon of the Great Divergence in the income 
per capita‛ claimed by Galor, because there was no Great 
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Divergence. Galor created the Great Divergence by his habitual 
distorted representations of data. 

9. There is no need to explain the puzzling features of income per 
capita distributions and no need for proposing different 
mechanisms of growth to different perceived parts of these 
distributions because their puzzling features are no longer 
puzzling. They reflect the general mathematical property of 
dividing two hyperbolic distributions and they have nothing to 
do with an imagined mechanism attributable only to the growth 
of income per capita. Any two hyperbolic distributions, when 
divided, display the same pattern of growth. The only 
requirement is for the numerator to be characterised by an 
earlier singularity than the denominator. 

10.  Malthus noticed the dichotomous effects of his positive checks: 
they increase the rate of mortality but they also stimulate 
growth. He also suggested that these stimulating effects should 
be further investigated. Unfortunately, his seminal observation 
was ignored. The investigation of Malthusian positive checks 
demonstrated that he was right. They do not cause stagnation 
but stimulate growth by increasing the growth rate. 

11.  There is no need to include impacts of demographic 
catastrophes to explain the mechanism of growth of human 
population, because with only one notable exception they did 
not shape growth trajectories. The absence of their impacts can 
be explained by the fundamental properties of Malthusian 
positive checks and by the relatively small intensity of 
demographic catastrophes. They might have had significant 
local impacts but they did not shape the growth of global 
population and there is also no convincing evidence that they 
were shaping the growth of regional populations. The notable 
exception was between AD 1195 and 1470 when a minor 
distortion in the growth trajectory of the world population 
coincides with an unusual convergence of five major 
demographic catastrophes. The resulting short delay in the 
growth of population was quickly compensated by the renewed 
hyperbolic growth from AD 1470, which was even faster than 
before AD 1195. 

12.  Demographic Transition Theory and the Unified Growth 
Theory are contradicted by data, even by the same data, which 
were used in unsuccessful attempts to support these two 
theories because data were never rigorously analysed. These 
two theories have no useful place in the demographic and 
economic research. They are misleading, incorrect and 
scientifically unacceptable. 



R.W. Nielsen, Evidence-based Unified Growth Theory… Vol.3                         KSP Books 

196 

13.  There has been too much fantasy in the demographic and 
economic research, which is in a way understandable because 
good sets of data were not available. Now they are. Significant 
changes have to be made if these two fields of research are 
meant to be recognised as science. Demographic and economic 
research has to be based on accepting that the historical growth 
of population and economic growth were following hyperbolic 
trajectories. Correct understanding of hyperbolic distributions is 
the fundamental requirement for the correct understanding of 
the past growth of population and of economic growth. 

14.  Mechanism of the hyperbolic economic growth and of the 
hyperbolic growth of population has been now explained. 
Hyperbolic growth is the simplest, unconstrained, growth 
prompted by the simplest fundamental forces. In the case of the 
growth of population, it is the indispensable, biologically-
controlled, force of procreation, which, includes birth and death 
rates and which is on average constant per person. In the case of 
the economic growth, it is the simplest market force, which is 
directly proportional to the generated wealth. These were the 
dominating forces of growth in the past and they were shaping 
the growth of population and economic growth. This simple 
dominating mechanism was disrupted only three times in the 
past 2,000,000 years (1) between 46,000 BC and 27,000 BC 
when there was a transition from a slow to a fast hyperbolic 
growth, (2) between 425 BC and AD 510 when there was a 
transition from a fast to a significantly slower hyperbolic 
growth, and (3) between AD 1195 and 1470, when there was a 
minor disturbance coinciding with the unusual convergence of 
five exceptionally strong demographic catastrophes. From 
around 1950, other forces also started to contribute strongly to 
the growth of population and to the economic growth. Growth 
is no longer hyperbolic, as it was in the past, but it was diverted 
to slower trajectories. Future growth trajectories are unknown. 
However, there appears to be now no more room for a 
continuation of hyperbolic growth. 

15.  The currently accepted interpretations of the mechanism of 
economic growth and of the growth of population are not only 
in conflict with data but they are also dangerously misleading 
because they create the sense of security by claiming that after a 
long time of stagnation, extending over thousands or even 
millions of years, we have finally escaped the alleged, but non-
existent, Malthusian trap and entered into the so-called 
sustained growth regime. Scientific evidence shows that the 
opposite is true. The past growth was stable, secure and 
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sustainable, as demonstrated by the largely stable hyperbolic 
distributions. In contrast, it is the current growth, which is 
potentially unsustainable. For the first time in human existence, 
human ecological footprint is larger than ecological capacity 
and it continues to increase. For the first time in human history 
we support our existence on the continually increasing 
ecological deficit.  

16.  Conjectures are acceptable in scientific research but they have 
to be controlled and moderated by a rigorous analysis of data. 
When conjectures are supported by conjectures, the created 
system of doctrines and explanations becomes quickly 
scientifically untenable.  

17.  Growth of the world population is now following a gradually 
decelerating trajectory. This slowing down growth commenced 
around 1963, after an initial minor boosting around 1950. From 
1950, global economic growth also started to follow a slower 
trajectory. It is unfortunate that after the initial decline, growth 
rate describing global economic growth settled along a constant 
value, which describes exponential growth. There is a strong 
possibility that growth of population might also settle along an 
exponential trajectory because the growth rate is now 
decreasing so slowly that it might easily become constant. 
There is now an urgent need in the demographic and economic 
research to look for ways of making the growth of population 
and of economic growth sustainable. 
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